2025
pdf
bib
abs
A Reality Check on Context Utilisation for Retrieval-Augmented Generation
Lovisa Hagström
|
Sara Vera Marjanovic
|
Haeun Yu
|
Arnav Arora
|
Christina Lioma
|
Maria Maistro
|
Pepa Atanasova
|
Isabelle Augenstein
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval-augmented generation (RAG) helps address the limitations of parametric knowledge embedded within a language model (LM). In real world settings, retrieved information can vary in complexity, yet most investigations of LM utilisation of context has been limited to synthetic text. We introduce DRUID (Dataset of Retrieved Unreliable, Insufficient and Difficult-to-understand contexts) with real-world queries and contexts manually annotated for stance. The dataset is based on the prototypical task of automated claim verification, for which automated retrieval of real-world evidence is crucial. We compare DRUID to synthetic datasets (CounterFact, ConflictQA) and find that artificial datasets often fail to represent the complexity and diversity of realistically retrieved context. We show that synthetic datasets exaggerate context characteristics rare in real retrieved data, which leads to inflated context utilisation results, as measured by our novel ACU score. Moreover, while previous work has mainly focused on singleton context characteristics to explain context utilisation, correlations between singleton context properties and ACU on DRUID are surprisingly small compared to other properties related to context source. Overall, our work underscores the need for real-world aligned context utilisation studies to represent and improve performance in real-world RAG settings.
pdf
bib
abs
Language Model Re-rankers are Fooled by Lexical Similarities
Lovisa Hagström
|
Ercong Nie
|
Ruben Halifa
|
Helmut Schmid
|
Richard Johansson
|
Alexander Junge
Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)
Language model (LM) re-rankers are used to refine retrieval results for retrieval-augmented generation (RAG). They are more expensive than lexical matching methods like BM25 but assumed to better process semantic information and the relations between the query and the retrieved answers. To understand whether LM re-rankers always live up to this assumption, we evaluate 6 different LM re-rankers on the NQ, LitQA2 and DRUID datasets. Our results show that LM re-rankers struggle to outperform a simple BM25 baseline on DRUID. Leveraging a novel separation metric based on BM25 scores, we explain and identify re-ranker errors stemming from lexical dissimilarities. We also investigate different methods to improve LM re-ranker performance and find these methods mainly useful for NQ. Taken together, our work identifies and explains weaknesses of LM re-rankers and points to the need for more adversarial and realistic datasets for their evaluation.
pdf
bib
abs
Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion
Denitsa Saynova
|
Lovisa Hagström
|
Moa Johansson
|
Richard Johansson
|
Marco Kuhlmann
Findings of the Association for Computational Linguistics: ACL 2025
Language models (LMs) can make a correct prediction based on many possible signals in a prompt, not all corresponding to recall of factual associations. However, current interpretations of LMs fail to take this into account. For example, given the query “Astrid Lindgren was born in” with the corresponding completion “Sweden”, no difference is made between whether the prediction was based on knowing where the author was born or assuming that a person with a Swedish-sounding name was born in Sweden. In this paper, we present a model-specific recipe - PrISM - for constructing datasets with examples of four different prediction scenarios: generic language modeling, guesswork, heuristics recall and exact fact recall. We apply two popular interpretability methods to the scenarios: causal tracing (CT) and information flow analysis. We find that both yield distinct results for each scenario. Results for exact fact recall and generic language modeling scenarios confirm previous conclusions about the importance of mid-range MLP sublayers for fact recall, while results for guesswork and heuristics indicate a critical role of late last token position MLP sublayers. In summary, we contribute resources for a more extensive and granular study of fact completion in LMs, together with analyses that provide a more nuanced understanding of how LMs process fact-related queries.
2023
pdf
bib
abs
The Effect of Scaling, Retrieval Augmentation and Form on the Factual Consistency of Language Models
Lovisa Hagström
|
Denitsa Saynova
|
Tobias Norlund
|
Moa Johansson
|
Richard Johansson
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) make natural interfaces to factual knowledge, but their usefulness is limited by their tendency to deliver inconsistent answers to semantically equivalent questions. For example, a model might supply the answer “Edinburgh” to “Anne Redpath passed away in X.” and “London” to “Anne Redpath’s life ended in X.” In this work, we identify potential causes of inconsistency and evaluate the effectiveness of two mitigation strategies: up-scaling and augmenting the LM with a passage retrieval database. Our results on the LLaMA and Atlas models show that both strategies reduce inconsistency but that retrieval augmentation is considerably more efficient. We further consider and disentangle the consistency contributions of different components of Atlas. For all LMs evaluated we find that syntactical form and task artifacts impact consistency. Taken together, our results provide a better understanding of the factors affecting the factual consistency of language models.
2022
pdf
bib
abs
What do Models Learn From Training on More Than Text? Measuring Visual Commonsense Knowledge
Lovisa Hagström
|
Richard Johansson
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
There are limitations in learning language from text alone. Therefore, recent focus has been on developing multimodal models. However, few benchmarks exist that can measure what language models learn about language from multimodal training. We hypothesize that training on a visual modality should improve on the visual commonsense knowledge in language models. Therefore, we introduce two evaluation tasks for measuring visual commonsense knowledge in language models (code publicly available at: github.com/lovhag/measure-visual-commonsense-knowledge) and use them to evaluate different multimodal models and unimodal baselines. Primarily, we find that the visual commonsense knowledge is not significantly different between the multimodal models and unimodal baseline models trained on visual text data.
pdf
bib
abs
Can We Use Small Models to Investigate Multimodal Fusion Methods?
Lovisa Hagström
|
Tobias Norlund
|
Richard Johansson
Proceedings of the 2022 CLASP Conference on (Dis)embodiment
Many successful methods for fusing language with information from the visual modality have recently been proposed and the topic of multimodal training is ever evolving. However, it is still largely not known what makes different vision-and-language models successful. Investigations into this are made difficult by the large sizes of the models used, requiring large training datasets and causing long train and compute times. Therefore, we propose the idea of studying multimodal fusion methods in a smaller setting with small models and datasets. In this setting, we can experiment with different approaches for fusing multimodal information with language in a controlled fashion, while allowing for fast experimentation. We illustrate this idea with the math arithmetics sandbox. This is a setting in which we fuse language with information from the math modality and strive to replicate some fusion methods from the vision-and-language domain. We find that some results for fusion methods from the larger domain translate to the math arithmetics sandbox, indicating a promising future avenue for multimodal model prototyping.
pdf
bib
abs
How to Adapt Pre-trained Vision-and-Language Models to a Text-only Input?
Lovisa Hagström
|
Richard Johansson
Proceedings of the 29th International Conference on Computational Linguistics
Current language models have been criticised for learning language from text alone without connection between words and their meaning. Consequently, multimodal training has been proposed as a way for creating models with better language understanding by providing the lacking connection. We focus on pre-trained multimodal vision-and-language (VL) models for which there already are some results on their language understanding capabilities. An unresolved issue with evaluating the linguistic skills of these models, however, is that there is no established method for adapting them to text-only input without out-of-distribution uncertainty. To find the best approach, we investigate and compare seven possible methods for adapting three different pre-trained VL models to text-only input. Our evaluations on both GLUE and Visual Property Norms (VPN) show that care should be put into adapting VL models to zero-shot text-only tasks, while the models are less sensitive to how we adapt them to non-zero-shot tasks. We also find that the adaptation methods perform differently for different models and that unimodal model counterparts perform on par with the VL models regardless of adaptation, indicating that current VL models do not necessarily gain better language understanding from their multimodal training.
2021
pdf
bib
abs
Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
Tobias Norlund
|
Lovisa Hagström
|
Richard Johansson
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Large language models are known to suffer from the hallucination problem in that they are prone to output statements that are false or inconsistent, indicating a lack of knowledge. A proposed solution to this is to provide the model with additional data modalities that complements the knowledge obtained through text. We investigate the use of visual data to complement the knowledge of large language models by proposing a method for evaluating visual knowledge transfer to text for uni- or multimodal language models. The method is based on two steps, 1) a novel task querying for knowledge of memory colors, i.e. typical colors of well-known objects, and 2) filtering of model training data to clearly separate knowledge contributions. Additionally, we introduce a model architecture that involves a visual imagination step and evaluate it with our proposed method. We find that our method can successfully be used to measure visual knowledge transfer capabilities in models and that our novel model architecture shows promising results for leveraging multimodal knowledge in a unimodal setting.
pdf
bib
abs
Knowledge Distillation for Swedish NER models: A Search for Performance and Efficiency
Lovisa Hagström
|
Richard Johansson
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
The current recipe for better model performance within NLP is to increase model size and training data. While it gives us models with increasingly impressive results, it also makes it more difficult to train and deploy state-of-the-art models for NLP due to increasing computational costs. Model compression is a field of research that aims to alleviate this problem. The field encompasses different methods that aim to preserve the performance of a model while decreasing the size of it. One such method is knowledge distillation. In this article, we investigate the effect of knowledge distillation for named entity recognition models in Swedish. We show that while some sequence tagging models benefit from knowledge distillation, not all models do. This prompts us to ask questions about in which situations and for which models knowledge distillation is beneficial. We also reason about the effect of knowledge distillation on computational costs.