Long Jin


2025

pdf bib
DRAE: Dynamic Retrieval-Augmented Expert Networks for Lifelong Learning and Task Adaptation in Robotics
Yayu Long | Kewei Chen | Long Jin | Mingsheng Shang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce Dynamic Retrieval-Augmented Expert Networks (DRAE), a groundbreaking architecture that addresses the challenges of lifelong learning, catastrophic forgetting, and task adaptation by combining the dynamic routing capabilities of Mixture-of-Experts (MoE); leveraging the knowledge-enhancement power of Retrieval-Augmented Generation (RAG); incorporating a novel hierarchical reinforcement learning (RL) framework; and coordinating through ReflexNet-SchemaPlanner-HyperOptima (RSHO).DRAE dynamically routes expert models via a sparse MoE gating mechanism, enabling efficient resource allocation while leveraging external knowledge through parametric retrieval (P-RAG) to augment the learning process. We propose a new RL framework with ReflexNet for low-level task execution, SchemaPlanner for symbolic reasoning, and HyperOptima for long-term context modeling, ensuring continuous adaptation and memory retention. Experimental results show that DRAE significantly outperforms baseline approaches in long-term task retention and knowledge reuse, achieving an average task success rate of 82.5% across a set of dynamic robotic manipulation tasks, compared to 74.2% for traditional MoE models. Furthermore, DRAE maintains an extremely low forgetting rate, outperforming state-of-the-art methods in catastrophic forgetting mitigation. These results demonstrate the effectiveness of our approach in enabling flexible, scalable, and efficient lifelong learning for robotics.

2024

pdf bib
Leveraging LLM Reasoning Enhances Personalized Recommender Systems
Alicia Tsai | Adam Kraft | Long Jin | Chenwei Cai | Anahita Hosseini | Taibai Xu | Zemin Zhang | Lichan Hong | Ed H. Chi | Xinyang Yi
Findings of the Association for Computational Linguistics: ACL 2024