Linbo Zhu


2025

pdf bib
UniRAG: Unified Query Understanding Method for Retrieval Augmented Generation
Rui Li | Liyang He | Qi Liu | Zheng Zhang | Heng Yu | Yuyang Ye | Linbo Zhu | Yu Su
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-Augmented Generation (RAG) technology effectively addresses the issues of knowledge update lag and hallucinations in large language models (LLMs) by integrating internal and external knowledge. Existing query augmentation methods improve RAG’s performance in handling complex queries but face two key challenges: (1) the separation of query augmentation and encoding tasks, which hinders information sharing and introduces cumulative errors, and (2) the difficulty of selecting the optimal augmentation strategy for different scenarios. In this work, we propose UniRAG, a unified framework for query understanding in RAG. UniRAG employs a decoder-only LLM to jointly perform query augmentation and encoding, eliminating task separation. To facilitate adaptive query augmentation, we categorize existing techniques into query paraphrasing, query expansion, and query abstraction. Our model learns to select the optimal augmentation strategy based on user queries, leveraging retrieval and generation outputs as feedback. Experimental results show that UniRAG significantly outperforms traditional query augmentation methods in five knowledge-intensive benchmark tasks in both closed and open domain question answering.

2024

pdf bib
RePair: Automated Program Repair with Process-based Feedback
Yuze Zhao | Zhenya Huang | Yixiao Ma | Rui Li | Kai Zhang | Hao Jiang | Qi Liu | Linbo Zhu | Yu Su
Findings of the Association for Computational Linguistics: ACL 2024

The gap between the trepidation of program reliability and the expense of repairs underscore the indispensability for Automated Program Repair (APR). APR is instrumental in transforming vulnerable programs into more robust ones, bolstering program reliability while simultaneously diminishing the financial burden of manual repairs. Commercial-scale language models (LM) have taken APR to unprecedented levels. However, due to the limitations of model capabilities by parameters, a one-step substantial modification may not achieve the desired effect for models with parameters less than 100B. Moreover, humans interact with the LLM through explicit prompts, which hinders the LLM from receiving feedback from compiler and test cases to automatically optimize its repair policies. Explicit prompts from humans not only increase additional manpower costs, but also pose potential misunderstandings between human’s intent and LMs.Based on the above considerations, we are exploring how to ensure small-scale LM still outperform through process supervision and feedback. We start by constructing a dataset named CodeNet4Repair, replete with multiple repair records, which supervises the fine-tuning of a foundational mode. Building upon the encouraging outcomes of reinforcement learning, we develop a reward model that serves as a critic, providing feedback for the fine-tuned LM’s action, progressively optimizing its policy. During inference, we require the LM to generate solutions iteratively until the repair effect no longer improves or hits the maximum step limit. The experimental results show that this process-based feedback not only outperforms larger outcome-based generation methods, but also nearly matches the performance of closed-source commercial large-scale LMs.