Keming Mao
2025
Adversarial Preference Learning for Robust LLM Alignment
Yuanfu Wang
|
Pengyu Wang
|
Chenyang Xi
|
Bo Tang
|
Junyi Zhu
|
Wenqiang Wei
|
Chen Chen
|
Chao Yang
|
Jingfeng Zhang
|
Chaochao Lu
|
Yijun Niu
|
Keming Mao
|
Zhiyu Li
|
Feiyu Xiong
|
Jie Hu
|
Mingchuan Yang
Findings of the Association for Computational Linguistics: ACL 2025
Modern language models often rely on Reinforcement Learning from Human Feedback (RLHF) to encourage safe behaviors. However, they remain vulnerable to adversarial attacks due to three key limitations: (1) the inefficiency and high cost of human annotation, (2) the vast diversity of potential adversarial attacks, and (3) the risk of feedback bias and reward hacking. To address these challenges, we introduce Adversarial Preference Learning (APL), an iterative adversarial training method incorporating three key innovations. First, a direct harmfulness metric based on the model’s intrinsic preference probabilities, eliminating reliance on external assessment. Second, a conditional generative attacker that synthesizes input-specific adversarial variations. Third, an iterative framework with automated closed-loop feedback, enabling continuous adaptation through vulnerability discovery and mitigation. Experiments on Mistral-7B-Instruct-v0.3 demonstrate that APL significantly enhances robustness, achieving 83.33% harmlessness win rate over the base model (evaluated by GPT-4o), reducing harmful outputs from 5.88% to 0.43% (measured by LLaMA-Guard), and lowering attack success rate by up to 65% according to HarmBench. Notably, APL maintains competitive utility, with an MT-Bench score of 6.59 (comparable to the baseline 6.78) and an LC-WinRate of 46.52% against the base model.
2024
NewsBench: A Systematic Evaluation Framework for Assessing Editorial Capabilities of Large Language Models in Chinese Journalism
Miao Li
|
Ming-Bin Chen
|
Bo Tang
|
ShengbinHou ShengbinHou
|
Pengyu Wang
|
Haiying Deng
|
Zhiyu Li
|
Feiyu Xiong
|
Keming Mao
|
Cheng Peng
|
Yi Luo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
We present NewsBench, a novel evaluation framework to systematically assess the capabilities of Large Language Models (LLMs) for editorial capabilities in Chinese journalism. Our constructed benchmark dataset is focused on four facets of writing proficiency and six facets of safety adherence, and it comprises manually and carefully designed 1,267 test samples in the types of multiple choice questions and short answer questions for five editorial tasks in 24 news domains. To measure performances, we propose different GPT-4 based automatic evaluation protocols to assess LLM generations for short answer questions in terms of writing proficiency and safety adherence, and both are validated by the high correlations with human evaluations. Based on the systematic evaluation framework, we conduct a comprehensive analysis of eleven popular LLMs which can handle Chinese. The experimental results highlight GPT-4 and ERNIE Bot as top performers, yet reveal a relative deficiency in journalistic safety adherence in creative writing tasks. Our findings also underscore the need for enhanced ethical guidance in machine-generated journalistic content, marking a step forward in aligning LLMs with journalistic standards and safety considerations. The evaluation framework and experimental results are expected to provide an in-depth understanding of the editorial capabilities of LLMs and speed up the development of LLMs in journalism.