Kate M. Knill


2025

pdf bib
Exploiting the English Vocabulary Profile for L2 word-level vocabulary assessment with LLMs
Stefano Bannò | Kate M. Knill | Mark J. F. Gales
Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)

Vocabulary use is a fundamental aspect of second language (L2) proficiency. To date, its assessment by automated systems has typically examined the context-independent, or part-of-speech (PoS) related use of words. This paper introduces a novel approach to enable fine-grained vocabulary evaluation exploiting the precise use of words within a sentence. The scheme combines large language models (LLMs) with the English Vocabulary Profile (EVP). The EVP is a standard lexical resource that enables in-context vocabulary use to be linked with proficiency level. We evaluate the ability of LLMs to assign proficiency levels to individual words as they appear in L2 learner writing, addressing key challenges such as polysemy, contextual variation, and multi-word expressions. We compare LLMs to a PoS-based baseline. LLMs appear to exploit additional semantic information that yields improved performance.We also explore correlations between word-level proficiency and essay-level proficiency. Finally, the approach is applied to examine the consistency of the EVP proficiency levels. Results show that LLMs are well-suited for the task of vocabulary assessment.

2024

pdf bib
Can GPT-4 do L2 analytic assessment?
Stefano Bannò | Hari K. Vydana | Kate M. Knill | Mark J. F. Gales
Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)

Automated essay scoring (AES) to evaluate second language (L2) proficiency has been a firmly established technology used in educational contexts for decades. Although holistic scoring has seen advancements in AES that match or even exceed human performance, analytic scoring still encounters issues as it inherits flaws and shortcomings from the human scoring process. The recent introduction of large language models presents new opportunities for automating the evaluation of specific aspects of L2 writing proficiency. In this paper, we perform a series of experiments using GPT-4 in a zero-shot fashion on a publicly available dataset annotated with holistic scores based on the Common European Framework of Reference and aim to extract detailed information about their underlying analytic components. We observe significant correlations between the automatically predicted analytic scores and multiple features associated with the individual proficiency components.