Katarzyna Pruś
2025
World Knowledge Resolves Some Aspectual Ambiguity
Katarzyna Pruś
|
Mark Steedman
|
Adam Lopez
Findings of the Association for Computational Linguistics: ACL 2025
Annotating event descriptions with their aspectual features is often seen as a pre-requisite to temporal reasoning. However, a recent study by Pruś et al. (2024) has shown that non-experts’ annotations of the aspectual class of English verb phrases can disagree with both expert linguistic annotations and each another. They hypothesised that people use their world knowledge to tacitly conjure their own contexts, leading to disagreement between them. In this paper, we test that hypothesis by adding context to Pruś et al.’s examples and mirroring their experiment. Our results show that whilst their hypothesis explains some of the disagreement, some examples continue to yield divided responses even with the additional context. Finally, we show that outputs from GPT-4, despite to some degree capturing the aspectual class division, are not an accurate predictor of human answers.
2024
Human Temporal Inferences Go Beyond Aspectual Class
Katarzyna Pruś
|
Mark Steedman
|
Adam Lopez
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Past work in NLP has proposed the task of classifying English verb phrases into situation aspect categories, assuming that these categories play an important role in tasks requiring temporal reasoning. We investigate this assumption by gathering crowd-sourced judgements about aspectual entailments from non-expert, native English participants. The results suggest that aspectual class alone is not sufficient to explain the response patterns of the participants. We propose that looking at scenarios which can feasibly accompany an action description contributes towards a better explanation of the participants’ answers. A further experiment using GPT-3.5 shows that its outputs follow different patterns than human answers, suggesting that such conceivable scenarios cannot be fully accounted for in the language alone. We release our dataset to support further research.