2025
pdf
bib
abs
Zero-Shot Conversational Stance Detection: Dataset and Approaches
Yuzhe Ding
|
Kang He
|
Bobo Li
|
Li Zheng
|
Haijun He
|
Fei Li
|
Chong Teng
|
Donghong Ji
Findings of the Association for Computational Linguistics: ACL 2025
Stance detection, which aims to identify public opinion towards specific targets using social media data, is an important yet challenging task. With the increasing number of online debates among social media users, conversational stance detection has become a crucial research area. However, existing conversational stance detection datasets are restricted to a limited set of specific targets, which constrains the effectiveness of stance detection models when encountering a large number of unseen targets in real-world applications. To bridge this gap, we manually curate a large-scale, high-quality zero-shot conversational stance detection dataset, named ZS-CSD, comprising 280 targets across two distinct target types. Leveraging the ZS-CSD dataset, we propose SITPCL, a speaker interaction and target-aware prototypical contrastive learning model, and establish the benchmark performance in the zero-shot setting. Experimental results demonstrate that our proposed SITPCL model achieves state-of-the-art performance in zero-shot conversational stance detection. Notably, the SITPCL model attains only an F1-macro score of 43.81%, highlighting the persistent challenges in zero-shot conversational stance detection.
pdf
bib
abs
DALR: Dual-level Alignment Learning for Multimodal Sentence Representation Learning
Kang He
|
Yuzhe Ding
|
Haining Wang
|
Fei Li
|
Chong Teng
|
Donghong Ji
Findings of the Association for Computational Linguistics: ACL 2025
Previous multimodal sentence representation learning methods have achieved impressive performance. However, most approaches focus on aligning images and text at a coarse level, facing two critical challenges: cross-modal misalignment bias and intra-modal semantic divergence, which significantly degrade sentence representation quality. To address these challenges, we propose DALR (Dual-level Alignment Learning for Multimodal Sentence Representation). For cross-modal alignment, we propose a consistency learning module that softens negative samples and utilizes semantic similarity from an auxiliary task to achieve fine-grained cross-modal alignment. Additionally, we contend that sentence relationships go beyond binary positive-negative labels, exhibiting a more intricate ranking structure. To better capture these relationships and enhance representation quality, we integrate ranking distillation with global intra-modal alignment learning. Comprehensive experiments on semantic textual similarity (STS) and transfer (TR) tasks validate the effectiveness of our approach, consistently demonstrating its superiority over state-of-the-art baselines.
2024
pdf
bib
abs
Refining and Synthesis: A Simple yet Effective Data Augmentation Framework for Cross-Domain Aspect-based Sentiment Analysis
Haining Wang
|
Kang He
|
Bobo Li
|
Lei Chen
|
Fei Li
|
Xu Han
|
Chong Teng
|
Donghong Ji
Findings of the Association for Computational Linguistics: ACL 2024
Aspect-based Sentiment Analysis (ABSA) is extensively researched in the NLP community, yet related models face challenges due to data sparsity when shifting to a new domain. Hence, data augmentation for cross-domain ABSA has attracted increasing attention in recent years. However, two key points have been neglected in prior studies: First, target domain unlabeled data are labeled with pseudo labels by the model trained in the source domain with little quality control, leading to inaccuracy and error propagation. Second, the label and text patterns of generated labeled data are monotonous, thus limiting the robustness and generalization ability of trained ABSA models. In this paper, we aim to design a simple yet effective framework to address the above shortages in ABSA data augmentation, called Refining and Synthesis Data Augmentation (RSDA). Our framework roughly includes two steps: First, it refines generated labeled data using a natural language inference (NLI) filter to control data quality. Second, it synthesizes diverse labeled data via novel label composition and paraphrase approaches. We conduct experiments on 4 kinds of ABSA subtasks, and our framework outperforms 7 strong baselines, demonstrating its effectiveness.
pdf
bib
abs
Prompt-Based Bias Calibration for Better Zero/Few-Shot Learning of Language Models
Kang He
|
Yinghan Long
|
Kaushik Roy
Findings of the Association for Computational Linguistics: EMNLP 2024
Prompt-based learning is susceptible to intrinsic bias present in pre-trained language models (LMs), leading to sub-optimal performance in prompt-based zero/few-shot settings. In this work, we propose a null-input prompting method to calibrate intrinsic bias encoded in pre-trained LMs. Different from prior efforts that address intrinsic bias primarily for social fairness and often involve excessive computational cost, our objective is to explore enhancing LMs’ performance in downstream zero/few-shot learning while emphasizing the efficiency of intrinsic bias calibration. Specifically, we leverage a diverse set of auto-selected null-meaning inputs generated from GPT-4 to probe intrinsic bias of pre-trained LMs. Utilizing the bias-reflected probability distribution, we formulate a distribution disparity loss for bias calibration, where we exclusively update bias parameters (0.1% of total parameters) of LMs towards equal probability distribution. Experimental results show that the calibration promotes an equitable starting point for LMs while preserving language modeling abilities. Across a wide range of datasets, including sentiment analysis and topic classification, our method significantly improves zero/few-shot learning performance of LMs for both in-context learning and prompt-based fine-tuning (on average 9% and 2%, respectively).