Kawsar Noor


2025

pdf bib
CogStack-KCL-UCL at ArchEHR-QA 2025: Investigating Hybrid LLM Approaches for Grounded Clinical Question Answering
Shubham Agarwal | Thomas Searle | Kawsar Noor | Richard Dobson
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

We present our system for the ArchEHR shared task, which focuses on answering clinical and patient-facing questions grounded in real-world EHR data. Our core contribution is a 2-Stage prompting pipeline that separates evidence selection from answer generation while employing in-context learning strategies. Our experimentation leveraged the open-weight Gemma-v3 family of models, with our best submission using the Gemma-12B model securing 5th place overall on the unseen test set. Through systematic experimentation, we demonstrate the effectiveness of task decomposition in improving both factual accuracy and answer relevance in grounded clinical question answering.

pdf bib
Named Entity Inference Attacks on Clinical LLMs: Exploring Privacy Risks and the Impact of Mitigation Strategies
Adam Sutton | Xi Bai | Kawsar Noor | Thomas Searle | Richard Dobson
Proceedings of the Sixth Workshop on Privacy in Natural Language Processing

Transformer-based Large Language Models (LLMs) have achieved remarkable success across various domains, including clinical language processing, where they enable state-of-the-art performance in numerous tasks. Like all deep learning models, LLMs are susceptible to inference attacks that exploit sensitive attributes seen during training. AnonCAT, a RoBERTa-based masked language model, has been fine-tuned to de-identify sensitive clinical textual data. The community has a responsibility to explore the privacy risks of these models. This work proposes an attack method to infer sensitive named entities used in the training of AnonCAT models. We perform three experiments; the privacy implications of generating multiple names, the impact of white-box and black-box on attack inference performance, and the privacy-enhancing effects of Differential Privacy (DP) when applied to AnonCAT. By providing real textual predictions and privacy leakage metrics, this research contributes to understanding and mitigating the potential risks associated with exposing LLMs in sensitive domains like healthcare.