Junhong Wu


2025

pdf bib
LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs
Jianghao Chen | Junhong Wu | Yangyifan Xu | Jiajun Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a Long-context data selection framework with Attention-based Dependency Measurement (LADM), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.

pdf bib
Hit the Sweet Spot! Span-Level Ensemble for Large Language Models
Yangyifan Xu | Jianghao Chen | Junhong Wu | Jiajun Zhang
Proceedings of the 31st International Conference on Computational Linguistics

Ensembling various LLMs to unlock their complementary potential and leverage their individual strengths is highly valuable. Previous studies typically focus on two main paradigms: sample-level and token-level ensembles. Sample-level ensemble methods either select or blend fully generated outputs, which hinders dynamic correction and enhancement of outputs during the generation process. On the other hand, token-level ensemble methods enable real-time correction through fine-grained ensemble at each generation step. However, the information carried by an individual token is quite limited, leading to suboptimal decisions at each step. To address these issues, we propose SweetSpan, a span-level ensemble method that effectively balances the need for real-time adjustments and the information required for accurate ensemble decisions. Our approach involves two key steps: First, we have each candidate model independently generate candidate spans based on the shared prefix. Second, we calculate perplexity scores to facilitate mutual evaluation among the candidate models and achieve robust span selection by filtering out unfaithful scores. To comprehensively evaluate ensemble methods, we propose a new challenging setting (ensemble models with significant performance gaps) in addition to the standard setting (ensemble the best-performing models) to assess the performance of model ensembles in more realistic scenarios. Experimental results in both standard and challenging settings across various language generation tasks demonstrate the effectiveness, robustness, and versatility of our approach compared with previous ensemble methods.

pdf bib
Boosting LLM Translation Skills without General Ability Loss via Rationale Distillation
Junhong Wu | Yang Zhao | Yangyifan Xu | Bing Liu | Chengqing Zong
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have achieved impressive results across numerous NLP tasks, and fine-tuning them for Machine Translation (MT) has improved their performance. However, vanilla fine-tuning often leads to catastrophic forgetting, compromising the broad general abilities of LLMs and introducing potential security risks. These abilities, which are developed using proprietary and unavailable training data, make simple data replay methods ineffective. To overcome this issue, we propose a novel approach called **Ra**tionale **Dis**tillation. RaDis harnesses the strong generative capabilities of LLMs to create rationales for training data, which are then “replayed” to prevent forgetting. These rationales connect prior knowledge with new tasks, acting as self-distillation targets to regulate the training process. By jointly training on reference translations and self-generated rationales, the model can learn new translation skills while preserving its general abilities across other tasks. Additionally, RaDis provides a fresh perspective on using rationales in the CL field and has the potential to serve as a general continual learning method for a variety of tasks.

pdf bib
Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment
Wen Yang | Junhong Wu | Chen Wang | Chengqing Zong | Jiajun Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Direct Preference Optimization (DPO) has become a prominent method for aligning Large Language Models (LLMs) with human preferences. While DPO has enabled significant progress in aligning English LLMs, multilingual preference alignment is hampered by data scarcity. To address this, we propose a novel approach that captures learned preferences from well-aligned English models by implicit rewards and transfers them to other languages through iterative training. Specifically, we derive an implicit reward model from the logits of an English DPO-aligned model and its corresponding reference model. This reward model is then leveraged to annotate preference relations in cross-lingual instruction-following pairs, using English instructions to evaluate multilingual responses. The annotated data is subsequently used for multilingual DPO fine-tuning, facilitating preference knowledge transfer from English to other languages. Fine-tuning Llama3 for two iterations resulted in a 12.72% average improvement in Win Rate and a 5.97% increase in Length Control Win Rate across all training languages on the X-AlpacaEval leaderboard. Our findings demonstrate that leveraging existing English-aligned models can enable efficient and effective multilingual preference alignment, significantly reducing the need for extensive multilingual preference data.

2024

pdf bib
BLSP-Emo: Towards Empathetic Large Speech-Language Models
Chen Wang | Minpeng Liao | Zhongqiang Huang | Junhong Wu | Chengqing Zong | Jiajun Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The recent release of GPT-4o showcased the potential of end-to-end multimodal models, not just in terms of low latency but also in their ability to understand and generate expressive speech with rich emotions. While the details are unknown to the open research community, it likely involves significant amounts of curated data and compute, neither of which is readily accessible. In this paper, we present BLSP-Emo (Bootstrapped Language-Speech Pretraining with Emotion support), a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech and generate empathetic responses. BLSP-Emo utilizes existing speech recognition (ASR) and speech emotion recognition (SER) datasets through a two-stage process. The first stage focuses on semantic alignment, following recent work on pretraining speech-language models using ASR data. The second stage performs emotion alignment with the pretrained speech-language model on an emotion-aware continuation task constructed from SER data. Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses, both in instruction-following tasks and conversations.

pdf bib
F-MALLOC: Feed-forward Memory Allocation for Continual Learning in Neural Machine Translation
Junhong Wu | Yuchen Liu | Chengqing Zong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In the evolving landscape of Neural Machine Translation (NMT), the pretrain-then-finetune paradigm has yielded impressive results. However, the persistent challenge of Catastrophic Forgetting (CF) remains a hurdle. While previous work has introduced Continual Learning (CL) methods to address CF, these approaches grapple with the delicate balance between avoiding forgetting and maintaining system extensibility. To address this, we propose a CL method, named F-MALLOC (Feed-forward Memory ALLOCation). F-MALLOC is inspired by recent insights highlighting that feed-forward layers emulate neural memories and encapsulate crucial translation knowledge. It decomposes feed-forward layers into discrete memory cells and allocates these memories to different tasks. By learning to allocate and safeguard these memories, our method effectively alleviates CF while ensuring robust extendability. Besides, we propose a comprehensive assessment protocol for multi-stage CL of NMT systems. Experiments conducted following this new protocol showcase the superior performance of F-MALLOC, evidenced by higher BLEU scores and almost zero forgetting.