Joy Chen


2025

pdf bib
Y-NQ: English-Yorùbá Evaluation dataset for Open-Book Reading Comprehension with Open-Ended Questions
Marta R. Costa-jussà | Joy Chen | Ife Adebara | Joe Chuang | Christophe Ropers | Eduardo Sánchez
Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025)

The purpose of this work is to share an English-Yorùbá evaluation dataset for openbook reading comprehension with open-ended questions to assess the performance of models both in a high- and a low-resource language. The dataset contains 358 questions and answers on 338 English documents and 208 Yorùbá documents. Experiments show a consistent disparity in performance between the two languages, with Yorùbá falling behind English for automatic metrics even if documents are much shorter for this language. For a small set of documents with comparable length, performance of Yorùbá drops by 2.5 times and this comparison is validated with humanevaluation. When analyzing performance by length, we observe that Yorùbá decreases performance dramatically for documents that reach 1500 words while English performance is barely affected at that length. Our dataset opens the door to showcasing if English LLM reading comprehension capabilities extend to Yorùbá, which for the evaluated LLMs is not the case.

pdf bib
LCFO: Long Context and Long Form Output Dataset and Benchmarking
Marta R. Costa-jussà | Pierre Andrews | Mariano Coria Meglioli | Joy Chen | Joe Chuang | David Dale | Christophe Ropers | Alexandre Mourachko | Eduardo Sánchez | Holger Schwenk | Tuan A. Tran | Arina Turkatenko | Carleigh Wood
Findings of the Association for Computational Linguistics: ACL 2025

This paper presents the Long Context and Form Output (LCFO) benchmark, a novel evaluation framework for assessing gradual summarization and summary expansion capabilities across diverse domains. LCFO consists of long input documents (5k words average length), each of which comes with three summaries of different lengths (20%, 10%, and 5% of the input text), as well as approximately 15 questions and answers (QA) related to the input content. Notably, LCFO also provides alignments between specific QA pairs and corresponding summaries in 7 domains. The primary motivation behind providing summaries of different lengths is to establish a controllable framework for generating long texts from shorter inputs, i.e. summary expansion. To establish an evaluation metric framework for summarization and summary expansion, we provide human evaluation scores for human-generated outputs, as well as results from various state-of-the-art large language models (LLMs). GPT-4o-mini achieves best human scores among automatic systems in both summarization and summary expansion tasks (≈ +10% and +20%, respectively). It even surpasses human output quality in the case of short summaries (≈ +7%). Overall automatic metrics achieve low correlations with human evaluation scores (≈ 0.4) but moderate correlation on specific evaluation aspects such as fluency and attribution (≈ 0.6).