Joseph Chee Chang


2025

pdf bib
Ai2 Scholar QA: Organized Literature Synthesis with Attribution
Amanpreet Singh | Joseph Chee Chang | Dany Haddad | Aakanksha Naik | Jena D. Hwang | Rodney Kinney | Daniel S Weld | Doug Downey | Sergey Feldman
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Retrieval-augmented generation is increasingly effective in answering scientific questions from literature, but many state-of-the-art systems are expensive and closed-source. We introduce Ai2 Scholar QA, a free online scientific question answering application. To facilitate research, we make our entire pipeline public: as a customizable open-source Python package and interactive web app, along with paper indexes accessible through public APIs and downloadable datasets. We describe our system in detail and present experiments analyzing its key design decisions. In an evaluation on a recent scientific QA benchmark, we find that Ai2 Scholar QA outperforms competing systems.

2024

pdf bib
ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models
Benjamin Newman | Yoonjoo Lee | Aakanksha Naik | Pao Siangliulue | Raymond Fok | Juho Kim | Daniel S Weld | Joseph Chee Chang | Kyle Lo
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

When conducting literature reviews, scientists often create literature review tables—tables whose rows are publications and whose columns constitute a schema, a set of aspects used to compare and contrast the papers. Can we automatically generate these tables using language models (LMs)? In this work, we introduce a framework that leverages LMs to perform this task by decomposing it into separate schema and value generation steps. To enable experimentation, we address two main challenges: First, we overcome a lack of high-quality datasets to benchmark table generation by curating and releasing arxivDIGESTables, a new dataset of 2,228 literature review tables extracted from ArXiv papers that synthesize a total of 7,542 research papers. Second, to support scalable evaluation of model generations against human-authored reference tables, we develop DecontextEval, an automatic evaluation method that aligns elements of tables with the same underlying aspects despite differing surface forms. Given these tools, we evaluate LMs’ abilities to reconstruct reference tables, finding this task benefits from additional context to ground the generation (e.g. table captions, in-text references). Finally, through a human evaluation study we find that even when LMs fail to fully reconstruct a reference table, their generated novel aspects can still be useful.

pdf bib
Personalized Jargon Identification for Enhanced Interdisciplinary Communication
Yue Guo | Joseph Chee Chang | Maria Antoniak | Erin Bransom | Trevor Cohen | Lucy Wang | Tal August
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Scientific jargon can confuse researchers when they read materials from other domains. Identifying and translating jargon for individual researchers could speed up research, but current methods of jargon identification mainly use corpus-level familiarity indicators rather than modeling researcher-specific needs, which can vary greatly based on each researcher’s background. We collect a dataset of over 10K term familiarity annotations from 11 computer science researchers for terms drawn from 100 paper abstracts. Analysis of this data reveals that jargon familiarity and information needs vary widely across annotators, even within the same sub-domain (e.g., NLP). We investigate features representing domain, subdomain, and individual knowledge to predict individual jargon familiarity. We compare supervised and prompt-based approaches, finding that prompt-based methods using information about the individual researcher (e.g., personal publications, self-defined subfield of research) yield the highest accuracy, though the task remains difficult and supervised approaches have lower false positive rates. This research offers insights into features and methods for the novel task of integrating personal data into scientific jargon identification.

2013

bib
Aligning Words in Bitexts using the Bilingual Web
Jim Chang | Joseph Chee Chang | Jian-cheng Wu | Jason S. Chang
Proceedings of the Workshop on Twenty Years of Bitext