John Kender


2025

pdf bib
Cross-cultural Sentiment Analysis of Social Media Responses to a Sudden Crisis Event
Zheng Hui | Zihang Xu | John Kender
Proceedings of the Fourth Workshop on NLP for Positive Impact (NLP4PI)

Although the responses to events such as COVID-19 have been extensively studied, research on sudden crisis response in a multicultural context is still limited. In this paper, our contributions are 1)We examine cultural differences in social media posts related to such events in two different countries, specifically the United Kingdom lockdown of 2020-03-23 and the China Urumqi fire1 of 2022-11-24. 2) We extract the emotional polarity of tweets and weibos gathered temporally adjacent to those two events, by fine-tuning transformer-based language models for each language. We evaluate each model’s performance on 2 benchmarks, and show that, despite being trained on a relatively small amount of data, they exceed baseline accuracies. We find that in both events, the increase in negative responses is both dramatic and persistent, and does not return to baseline even after two weeks. Nevertheless, the Chinese dataset reflects, at the same time, positive responses to subsequent government action. Our study is one of the first to show how sudden crisis events can be used to explore affective reactions across cultures

2020

pdf bib
Predictive Model Selection for Transfer Learning in Sequence Labeling Tasks
Parul Awasthy | Bishwaranjan Bhattacharjee | John Kender | Radu Florian
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Transfer learning is a popular technique to learn a task using less training data and fewer compute resources. However, selecting the correct source model for transfer learning is a challenging task. We demonstrate a novel predictive method that determines which existing source model would minimize error for transfer learning to a given target. This technique does not require learning for prediction, and avoids computational costs of trail-and-error. We have evaluated this technique on nine datasets across diverse domains, including newswire, user forums, air flight booking, cybersecurity news, etc. We show that it per-forms better than existing techniques such as fine-tuning over vanilla BERT, or curriculum learning over the largest dataset on top of BERT, resulting in average F1 score gains in excess of 3%. Moreover, our technique consistently selects the best model using fewer tries.