Jingyuan Deng
2025
Robust and Minimally Invasive Watermarking for EaaS
Zongqi Wang
|
Baoyuan Wu
|
Jingyuan Deng
|
Yujiu Yang
Findings of the Association for Computational Linguistics: ACL 2025
Embeddings as a Service (EaaS) is emerging as a crucial role in AI applications. Unfortunately, EaaS is vulnerable to model extraction attacks, highlighting the urgent need for copyright protection. Although some preliminary works propose applying embedding watermarks to protect EaaS, recent research reveals that these watermarks can be easily removed. Hence, it is crucial to inject robust watermarks resistant to watermark removal attacks. Existing watermarking methods typically inject a target embedding into embeddings through linear interpolation when the text contains triggers. However, this mechanism results in each watermarked embedding having the same component, which makes the watermark easy to identify and eliminate. Motivated by this, in this paper, we propose a novel embedding-specific watermarking (ESpeW) mechanism to offer robust copyright protection for EaaS. Our approach involves injecting unique, yet readily identifiable watermarks into each embedding. Watermarks inserted by ESpeW are designed to maintain a significant distance from one another and to avoid sharing common components, thus making it significantly more challenging to remove the watermarks. Moreover, ESpeW is minimally invasive, as it reduces the impact on embeddings to less than 1%, setting a new milestone in watermarking for EaaS. Extensive experiments on four popular datasets demonstrate that ESpeW can even watermark successfully against a highly aggressive removal strategy without sacrificing the quality of embeddings.
2022
Improving Relevance Quality in Product Search using High-Precision Query-Product Semantic Similarity
Alireza Bagheri Garakani
|
Fan Yang
|
Wen-Yu Hua
|
Yetian Chen
|
Michinari Momma
|
Jingyuan Deng
|
Yan Gao
|
Yi Sun
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)
Ensuring relevance quality in product search is a critical task as it impacts the customer’s ability to find intended products in the short-term as well as the general perception and trust of the e-commerce system in the long term. In this work we leverage a high-precision cross-encoder BERT model for semantic similarity between customer query and products and survey its effectiveness for three ranking applications where offline-generated scores could be used: (1) as an offline metric for estimating relevance quality impact, (2) as a re-ranking feature covering head/torso queries, and (3) as a training objective for optimization. We present results on effectiveness of this strategy for the large e-commerce setting, which has general applicability for choice of other high-precision models and tasks in ranking.
Spelling Correction using Phonetics in E-commerce Search
Fan Yang
|
Alireza Bagheri Garakani
|
Yifei Teng
|
Yan Gao
|
Jia Liu
|
Jingyuan Deng
|
Yi Sun
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)
In E-commerce search, spelling correction plays an important role to find desired products for customers in processing user-typed search queries. However, resolving phonetic errors is a critical but much overlooked area. The query with phonetic spelling errors tends to appear correct based on pronunciation but is nonetheless inaccurate in spelling (e.g., “bluetooth sound system” vs. “blutut sant sistam”) with numerous noisy forms and sparse occurrences. In this work, we propose a generalized spelling correction system integrating phonetics to address phonetic errors in E-commerce search without additional latency cost. Using India (IN) E-commerce market for illustration, the experiment shows that our proposed phonetic solution significantly improves the F1 score by 9%+ and recall of phonetic errors by 8%+. This phonetic spelling correction system has been deployed to production, currently serving hundreds of millions of customers.
Search
Fix author
Co-authors
- Alireza Bagheri Garakani 2
- Yan Gao 2
- Yi Sun 2
- Fan Yang 2
- Yetian Chen 1
- show all...