RAG systems rely on rerankers to identify relevant documents. However, fine-tuning these models remains challenging due to the scarcity of annotated query-document pairs. Existing distillation-based approaches suffer from training-inference misalignment and fail to capture interdependencies among candidate documents. To overcome these limitations, we reframe the reranking process as an attention-mask problem and propose Gumbel Reranking, an end-to-end training framework for rerankers aimed at minimizing the training-inference gap. In our approach, reranker optimization is reformulated as learning a stochastic, document-wise Top-k attention mask using the Gumbel Trick and Relaxed Top-k Sampling. This formulation enables end-to-end optimization by minimizing the overall language loss. Experiments across various settings consistently demonstrate performance gains, including a 10.4% improvement in recall on HotpotQA for distinguishing indirectly relevant documents.
The transformer model is known to be computationally demanding, and prohibitively costly for long sequences, as the self-attention module uses a quadratic time and space complexity with respect to sequence length. Many researchers have focused on designing new forms of self-attention or introducing new parameters to overcome this limitation, however a large portion of them prohibits the model to inherit weights from large pretrained models. In this work, the transformer’s inefficiency has been taken care of from another perspective. We propose Fourier Transformer, a simple yet effective approach by progressively removing redundancies in hidden sequence using the ready-made Fast Fourier Transform (FFT) operator to perform Discrete Cosine Transformation (DCT). Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models. Experiments show that our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA with significant improvement in both speed and space. For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART and other efficient models. Our code will be publicly available at
https://github.com/LUMIA-Group/FourierTransformerTransformer architecture has become the de-facto model for many machine learning tasks from natural language processing and computer vision. As such, improving its computational efficiency becomes paramount. One of the major computational inefficiency of Transformer based models is that they spend the identical amount of computation throughout all layers. Prior works have proposed to augment the Transformer model with the capability of skimming tokens to improve its computational efficiency. However, they suffer from not having effectual and end-to-end optimization of the discrete skimming predictor. To address the above limitations, we propose the Transkimmer architecture, which learns to identify hidden state tokens that are not required by each layer. The skimmed tokens are then forwarded directly to the final output, thus reducing the computation of the successive layers. The key idea in Transkimmer is to add a parameterized predictor before each layer that learns to make the skimming decision. We also propose to adopt reparameterization trick and add skim loss for the end-to-end training of Transkimmer. Transkimmer achieves 10.97x average speedup on GLUE benchmark compared with vanilla BERT-base baseline with less than 1% accuracy degradation.
Recent research on the multi-head attention mechanism, especially that in pre-trained models such as BERT, has shown us heuristics and clues in analyzing various aspects of the mechanism. As most of the research focus on probing tasks or hidden states, previous works have found some primitive patterns of attention head behavior by heuristic analytical methods, but a more systematic analysis specific on the attention patterns still remains primitive. In this work, we clearly cluster the attention heatmaps into significantly different patterns through unsupervised clustering on top of a set of proposed features, which corroborates with previous observations. We further study their corresponding functions through analytical study. In addition, our proposed features can be used to explain and calibrate different attention heads in Transformer models.