Jin Jiang


2025

pdf bib
LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning
Jin Jiang | Yuchen Yan | Yang Liu | Jianing Wang | Shuai Peng | Xunliang Cai | Yixin Cao | Mengdi Zhang | Liangcai Gao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we propose a new data synthesis method called LogicPro, which leverages LeetCode-style algorithm Problems and their corresponding Program solutions to synthesize Complex Logical Reasoning data in text format. First, we synthesize complex reasoning problems through source algorithm problems and test cases. Then, standard answers and intermediate variable outputs are obtained for each problem based on standard python solutions and test cases. Finally, with the guidance of code intermediate variables, we synthesize the text reasoning process for each reasoning problems. Through this method, we can synthesize data that is difficult, scalable, effective, and comes with golden standard answers and high-quality reasoning processes. As a result, with our 540K synthesized dataset constructed solely from 2,360 algorithm problems, our approach achieves significant improvements in multiple models for the datasets BBH^27, LogicBench, DROP, AR-LSAT, and GSM8K, etc. outperforming a wide range of existing reasoning datasets.

2024

pdf bib
Contextual Modeling for Document-level ASR Error Correction
Jin Jiang | Xunjian Yin | Xiaojun Wan | Wei Peng | Rongjun Li | Jingyuan Yang | Yanquan Zhou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Contextual information, including the sentences in the same document and in other documents of the dataset, plays a crucial role in improving the accuracy of document-level ASR Error Correction (AEC), while most previous works ignore this. In this paper, we propose a context-aware method that utilizes a k-Nearest Neighbors (kNN) approach to enhance the AEC model by retrieving a datastore containing contextual information. We conduct experiments on two English and two Chinese datasets, and the results demonstrate that our proposed model can effectively utilize contextual information to improve document-level AEC. Furthermore, the context information from the whole dataset provides even better results.

pdf bib
Error-Robust Retrieval for Chinese Spelling Check
Xunjian Yin | Xinyu Hu | Jin Jiang | Xiaojun Wan
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chinese Spelling Check (CSC) aims to detect and correct error tokens in Chinese contexts, which has a wide range of applications. However, it is confronted with the challenges of insufficient annotated data and the issue that previous methods may actually not fully leverage the existing datasets. In this paper, we introduce our plug-and-play retrieval method with error-robust information for Chinese Spelling Check (RERIC), which can be directly applied to existing CSC models. The datastore for retrieval is built completely based on the training data, with elaborate designs according to the characteristics of CSC. Specifically, we employ multimodal representations that fuse phonetic, morphologic, and contextual information in the calculation of query and key during retrieval to enhance robustness against potential errors. Furthermore, in order to better judge the retrieved candidates, the n-gram surrounding the token to be checked is regarded as the value and utilized for specific reranking. The experiment results on the SIGHAN benchmarks demonstrate that our proposed method achieves substantial improvements over existing work.

2022

pdf bib
SAPGraph: Structure-aware Extractive Summarization for Scientific Papers with Heterogeneous Graph
Siya Qi | Lei Li | Yiyang Li | Jin Jiang | Dingxin Hu | Yuze Li | Yingqi Zhu | Yanquan Zhou | Marina Litvak | Natalia Vanetik
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Scientific paper summarization is always challenging in Natural Language Processing (NLP) since it is hard to collect summaries from such long and complicated text. We observe that previous works tend to extract summaries from the head of the paper, resulting in information incompleteness. In this work, we present SAPGraph to utilize paper structure for solving this problem. SAPGraph is a scientific paper extractive summarization framework based on a structure-aware heterogeneous graph, which models the document into a graph with three kinds of nodes and edges based on structure information of facets and knowledge. Additionally, we provide a large-scale dataset of COVID-19-related papers, CORD-SUM. Experiments on CORD-SUM and ArXiv datasets show that SAPGraph generates more comprehensive and valuable summaries compared to previous works.