Jieming Zhu


2025

pdf bib
CART: A Generative Cross-Modal Retrieval Framework With Coarse-To-Fine Semantic Modeling
Minghui Fang | Shengpeng Ji | Jialong Zuo | Hai Huang | Yan Xia | Jieming Zhu | Xize Cheng | Xiaoda Yang | Wenrui Liu | Gang Wang | Zhenhua Dong | Zhou Zhao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-modal retrieval aims to search for instances, which are semantically related to the query through the interaction of different modal data. Traditional solutions utilize a single-tower or dual-tower framework to explicitly compute the score between queries and candidates, which is challenged by training cost and inference latency with large-scale data. Inspired by the remarkable performance and efficiency of generative models, we propose a generative cross-modal retrieval framework (CART) based on coarse-to-fine semantic modeling, which assigns identifiers to each candidate and treats the generating identifier as the retrieval target. Specifically, we explore an effective coarse-to-fine scheme, combining K-Means and RQ-VAE to discretize multimodal data into token sequences that support autoregressive generation. Further, considering the lack of explicit interaction between queries and candidates, we propose a feature fusion strategy to align their semantics. Extensive experiments demonstrate the effectiveness of the strategies in the CART, achieving excellent results in both retrieval performance and efficiency.

pdf bib
MIRA: Empowering One-Touch AI Services on Smartphones with MLLM-based Instruction Recommendation
Zhipeng Bian | Jieming Zhu | Xuyang Xie | Quanyu Dai | Zhou Zhao | Zhenhua Dong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

The rapid advancement of generative AI technologies is driving the integration of diverse AI-powered services into smartphones, transforming how users interact with their devices. To simplify access to predefined AI services, this paper introduces MIRA, a pioneering framework for task instruction recommendation that enables intuitive one-touch AI tasking on smartphones. With MIRA, users can long-press on images or text objects to receive contextually relevant instruction recommendations for executing AI tasks. Our work introduces three key innovations: 1) A multimodal large language model (MLLM)-based recommendation pipeline with structured reasoning to extract key entities, infer user intent, and generate precise instructions; 2) A template-augmented reasoning mechanism that integrates high-level reasoning templates, enhancing task inference accuracy; 3) A prefix-tree-based constrained decoding strategy that restricts outputs to predefined instruction candidates, ensuring coherence and intent alignment. Through evaluation using a real-world annotated datasets and a user study, MIRA has demonstrated substantial improvements in recommendation accuracy. The encouraging results highlight MIRA’s potential to revolutionize the way users engage with AI services on their smartphones, offering a more seamless and efficient experience.

pdf bib
Enhancing Multimodal Unified Representations for Cross Modal Generalization
Hai Huang | Yan Xia | Shengpeng Ji | Shulei Wang | Hanting Wang | Minghui Fang | Jieming Zhu | Zhenhua Dong | Sashuai Zhou | Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2025

To enhance the interpretability of multimodal unified representations, many studies have focused on discrete unified representations. These efforts typically start with contrastive learning and gradually extend to the disentanglement of modal information, achieving solid multimodal discrete unified representations. However, existing research often overlooks two critical issues: 1) The use of Euclidean distance for quantization in discrete representations often overlooks the important distinctions among different dimensions of features, resulting in redundant representations after quantization; 2) Different modalities have unique characteristics, and a uniform alignment approach does not fully exploit these traits. To address these issues, we propose Training-free Optimization of Codebook (TOC) and Fine and Coarse cross-modal Information Disentangling (FCID). These methods refine the unified discrete representations from pretraining and perform fine- and coarse-grained information disentanglement tailored to the specific characteristics of each modality, achieving significant performance improvements over previous state-of-the-art models. The code is available at https://github.com/haihuangcode/CMG.

2022

pdf bib
Boosting Deep CTR Prediction with a Plug-and-Play Pre-trainer for News Recommendation
Qijiong Liu | Jieming Zhu | Quanyu Dai | Xiao-Ming Wu
Proceedings of the 29th International Conference on Computational Linguistics

Understanding news content is critical to improving the quality of news recommendation. To achieve this goal, recent studies have attempted to apply pre-trained language models (PLMs) such as BERT for semantic-enhanced news recommendation. Despite their great success in offline evaluation, it is still a challenge to apply such large PLMs in real-time ranking model due to the stringent requirement in inference and updating time. To bridge this gap, we propose a plug-and-play pre-trainer, namely PREC, to learn both user and news encoders through multi-task pre-training. Instead of directly leveraging sophisticated PLMs for end-to-end inference, we focus on how to use the derived user and item representations to boost the performance of conventional lightweight models for click-through-rate prediction. This enables efficient online inference as well as compatibility to conventional models, which would significantly ease the practical deployment. We validate the effectiveness of PREC through both offline evaluation on public datasets and online A/B testing in an industrial application.

pdf bib
MINER: Multi-Interest Matching Network for News Recommendation
Jian Li | Jieming Zhu | Qiwei Bi | Guohao Cai | Lifeng Shang | Zhenhua Dong | Xin Jiang | Qun Liu
Findings of the Association for Computational Linguistics: ACL 2022

Personalized news recommendation is an essential technique to help users find interested news. Accurately matching user’s interests and candidate news is the key to news recommendation. Most existing methods learn a single user embedding from user’s historical behaviors to represent the reading interest. However, user interest is usually diverse and may not be adequately modeled by a single user embedding. In this paper, we propose a poly attention scheme to learn multiple interest vectors for each user, which encodes the different aspects of user interest. We further propose a disagreement regularization to make the learned interests vectors more diverse. Moreover, we design a category-aware attention weighting strategy that incorporates the news category information as explicit interest signals into the attention mechanism. Extensive experiments on the MIND news recommendation benchmark demonstrate that our approach significantly outperforms existing state-of-the-art methods.