Jiawei Gu


2025

pdf bib
MolRAG: Unlocking the Power of Large Language Models for Molecular Property Prediction
Ziting Xian | Jiawei Gu | Lingbo Li | Shangsong Liang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent LLMs exhibit limited effectiveness on molecular property prediction task due to the semantic gap between molecular representations and natural language, as well as the lack of domain-specific knowledge. To address these challenges, we propose MolRAG, a Retrieval-Augmented Generation framework integrating Chain-of-Thought reasoning for molecular property prediction. MolRAG operates by retrieving structurally analogous molecules as contextual references to guide stepwise knowledge reasoning through chemical structure-property relationships. This dual mechanism synergizes molecular similarity analysis with structured inference, while generating human-interpretable rationales grounded in domain knowledge. Experimental results show MolRAG outperforms pre-trained LLMs on four datasets, and even matches supervised methods, achieving performance gains of 1.1%–45.7% over direct prediction approaches, demonstrating versatile effectiveness. Our code is available at https://github.com/AcaciaSin/MolRAG.

pdf bib
Speculative Reward Model Boosts Decision Making Ability of LLMs Cost-Effectively
Jiawei Gu | Shangsong Liang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Effective decision-making in Large Language Models (LLMs) is essential for handling intricate tasks. However, existing approaches prioritize performance but often overlook the balance between effectiveness and computational cost. To address this, we first introduce the 3E Criteria to systematically assess the cost-effectiveness of search strategies, revealing that existing methods often trade significant efficiency for marginal performance gains. To improve LLM decision-making while maintaining efficiency, we propose the Speculative Reward Model (SRM), a plug-and-play framework that seamlessly integrates with existing search strategies. Specifically, SRM employs an external reward assigner to predict optimal actions, reducing reliance on LLMs’ internal self-evaluation. And a speculative verification mechanism is used to prune suboptimal choices and guide the search toward more promising steps. We evaluate SRM on several complex decision-making tasks including mathematical reasoning, planning and numerical reasoning in specialized domains. Experimental results show that SRM reduces costs to 1/10 of the original search framework on average while maintaining effectiveness.

pdf bib
Toward Structured Knowledge Reasoning: Contrastive Retrieval-Augmented Generation on Experience
Jiawei Gu | Ziting Xian | Yuanzhen Xie | Ye Liu | Enjie Liu | Ruichao Zhong | Mochi Gao | Yunzhi Tan | Bo Hu | Zang Li
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) achieve strong performance on plain text tasks but underperform on structured data like tables and databases. Potential challenges arise from their underexposure during pre-training and rigid text-to-structure transfer mechanisms. Unlike humans who seamlessly apply learned patterns across data modalities, LLMs struggle to infer implicit relationships embedded in tabular formats, especially in the absence of explicit structural guidance. To bridge this cognitive gap, we introduce Contrastive Retrieval-Augmented Generation on Experience (CoRE), a framework that builds experience memory representations and enhances generalization through contrastive In-Context Learning (ICL) to simulate human-like knowledge transfer. Experiments on Text-to-SQL and TableQA show CoRE significantly improves performance, achieving average gains of 3.44% and 4.24%, with up to 17.2% on challenging tasks. Our Monte Carlo Tree Search (MCTS)-generated Experience Memory expands training data 8-9×, enhancing diversity and domain coverage. This training-free and continual method propels LLMs toward structured knowledge expertise.

2024

pdf bib
CMR Scaling Law: Predicting Critical Mixture Ratios for Continual Pre-training of Language Models
Jiawei Gu | Zacc Yang | Chuanghao Ding | Rui Zhao | Fei Tan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) excel in diverse tasks but often underperform in specialized fields due to limited domain-specific or proprietary corpus. Continual pre-training (CPT) enhances LLM capabilities by imbuing new domain-specific or proprietary knowledge while replaying general corpus to prevent catastrophic forgetting. The data mixture ratio of general corpus and domain-specific corpus, however, has been chosen heuristically, leading to sub-optimal training efficiency in practice. In this context, we attempt to re-visit the scaling behavior of LLMs under the hood of CPT, and discover a power-law relationship between loss, mixture ratio, and training tokens scale. We formalize the trade-off between general and domain-specific capabilities, leading to a well-defined Critical Mixture Ratio (CMR) of general and domain data. By striking the balance, CMR maintains the model’s general ability and achieves the desired domain transfer, ensuring the highest utilization of available resources. Considering the balance between efficiency and effectiveness, CMR can be regarded as the optimal mixture ratio. Through extensive experiments, we ascertain the predictability of CMR, propose CMR scaling law and have substantiated its generalization. These findings offer practical guidelines for optimizing LLM training in specialized domains, ensuring both general and domain-specific performance while efficiently managing training resources.