Jianling Li


2025

pdf bib
Contrastive Learning on LLM Back Generation Treebank for Cross-domain Constituency Parsing
Peiming Guo | Meishan Zhang | Jianling Li | Min Zhang | Yue Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-domain constituency parsing is still an unsolved challenge in computational linguistics since the available multi-domain constituency treebank is limited. We investigate automatic treebank generation by large language models (LLMs) in this paper. The performance of LLMs on constituency parsing is poor, therefore we propose a novel treebank generation method, LLM back generation, which is similar to the reverse process of constituency parsing. LLM back generation takes the incomplete cross-domain constituency tree with only domain keyword leaf nodes as input and fills the missing words to generate the cross-domain constituency treebank. Besides, we also introduce a span-level contrastive learning pre-training strategy to make full use of the LLM back generation treebank for cross-domain constituency parsing. We verify the effectiveness of our LLM back generation treebank coupled with contrastive learning pre-training on five target domains of MCTB. Experimental results show that our approach achieves state-of-the-art performance on average results compared with various baselines.

pdf bib
ChartEdit: How Far Are MLLMs From Automating Chart Analysis? Evaluating MLLMs’ Capability via Chart Editing
Xuanle Zhao | Xuexin Liu | Yang Haoyue | Xianzhen Luo | Fanhu Zeng | Jianling Li | Qi Shi | Chi Chen
Findings of the Association for Computational Linguistics: ACL 2025

Although multimodal large language models (MLLMs) show promise in generating chart rendering code, editing charts via code presents a greater challenge. This task demands MLLMs to integrate chart understanding and reasoning capacities, which are labor-intensive. While many MLLMs claim such editing capabilities, current evaluations rely on limited case studies, highlighting the urgent need for a comprehensive evaluation framework.In this work, we propose ChartEdit, a new high-quality benchmark designed for chart editing tasks. This benchmark comprises 1,405 diverse editing instructions applied to 233 real-world charts, with each instruction-chart instance having been manually annotated and validated for accuracy. Utilizing ChartEdit, we evaluate the performance of 10 mainstream MLLMs across two types of experiments at both the code and chart levels.The results suggest that large-scale models can generate code to produce images that partially match the reference images.However, their ability to generate accurate edits according to the instructions remains limited. The state-of-the-art (SOTA) model achieves a score of only 59.96, highlighting significant challenges in precise modification. In contrast, small-scale models, including chart-domain models, struggle both with following editing instructions and generating overall chart images, underscoring the need for further development in this area. Code is available at https://github.com/xxlllz/ChartEdit.

pdf bib
TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators
Jianling Li | ShangZhan Li | Zhenye Gao | Qi Shi | Yuxuan Li | Zefan Wang | Jiacheng Huang | WangHaojie WangHaojie | Jianrong Wang | Xu Han | Zhiyuan Liu | Maosong Sun
Findings of the Association for Computational Linguistics: ACL 2025

Triton, a high-level Python-like language designed for building efficient GPU kernels, is widely adopted in deep learning frameworks due to its portability, flexibility, and accessibility. However, programming and parallel optimization still require considerable trial and error from Triton developers. Despite advances in large language models (LLMs) for conventional code generation, these models struggle to generate accurate, performance-optimized Triton code, as they lack awareness of its specifications and the complexities of GPU programming. More critically, there is an urgent need for systematic evaluations tailored to Triton. In this work, we introduce TritonBench, the first comprehensive benchmark for Triton operator generation. TritonBench features two evaluation channels: a curated set of 184 real-world operators from GitHub and a collection of operators aligned with PyTorch interfaces. Unlike conventional code benchmarks prioritizing functional correctness, TritonBench also profiles efficiency performance on widely deployed GPUs aligned with industry applications. Our study reveals that current state-of-the-art code LLMs struggle to generate efficient Triton operators, highlighting a significant gap in high-performance code generation.

2023

pdf bib
LLM-enhanced Self-training for Cross-domain Constituency Parsing
Jianling Li | Meishan Zhang | Peiming Guo | Min Zhang | Yue Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Self-training has proven to be an effective approach for cross-domain tasks, and in this study, we explore its application to cross-domain constituency parsing. Traditional self-training methods rely on limited and potentially low-quality raw corpora. To overcome this limitation, we propose enhancing self-training with the large language model (LLM) to generate domain-specific raw corpora iteratively. For the constituency parsing, we introduce grammar rules that guide the LLM in generating raw corpora and establish criteria for selecting pseudo instances. Our experimental results demonstrate that self-training for constituency parsing, equipped with an LLM, outperforms traditional methods regardless of the LLM’s performance. Moreover, the combination of grammar rules and confidence criteria for pseudo-data selection yields the highest performance in the cross-domain constituency parsing.

2021

pdf bib
Word Graph Guided Summarization for Radiology Findings
Jinpeng Hu | Jianling Li | Zhihong Chen | Yaling Shen | Yan Song | Xiang Wan | Tsung-Hui Chang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021