Jiang Liu


2025

pdf bib
Self-Taught Agentic Long Context Understanding
Yufan Zhuang | Xiaodong Yu | Jialian Wu | Ximeng Sun | Ze Wang | Jiang Liu | Yusheng Su | Jingbo Shang | Zicheng Liu | Emad Barsoum
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Answering complex, long-context questions remains a major challenge for large language models (LLMs) as it requires effective question clarifications and context retrieval. We propose Agentic Long-Context Understanding (AgenticLU), a framework designed to enhance an LLM’s understanding of such queries by integrating targeted self-clarification with contextual grounding within an agentic workflow. At the core of AgenticLU is Chain-of-Clarifications (CoC), where models refine their understanding through self-generated clarification questions and corresponding contextual groundings. By scaling inference as a tree search where each node represents a CoC step, we achieve 97.8% answer recall on NarrativeQA with a search depth of up to three and a branching factor of eight. To amortize the high cost of this search process to training, we leverage the preference pairs for each step obtained by the CoC workflow and perform two-stage model finetuning: (1) supervised finetuning to learn effective decomposition strategies, and (2) direct preference optimization to enhance reasoning quality. This enables AgenticLU models to generate clarifications and retrieve relevant context effectively and efficiently in a single inference pass. Extensive experiments across seven long-context tasks demonstrate that AgenticLU significantly outperforms state-of-the-art prompting methods and specialized long-context LLMs, achieving robust multi-hop reasoning while sustaining consistent performance as context length grows.

pdf bib
TeamLoRA: Boosting Low-Rank Adaptation with Expert Collaboration and Competition
Tianwei Lin | Jiang Liu | Wenqiao Zhang | Yang Dai | Haoyuan Li | Zhelun Yu | Wanggui He | Juncheng Li | Jiannan Guo | Hao Jiang | Siliang Tang | Yueting Zhuang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) effectively address resource constraints during fine-tuning, their performance often falls short, especially in multidimensional task scenarios. To address this issue, one straightforward solution is to introduce task-specific LoRA as domain experts, leveraging the modeling of multiple capabilities of experts and thus enhancing the general capability of multi-task learning.Although promising, these additional components often add complexity to the training and inference process, contravening the efficiency that PEFT is designed to deliver. Considering this, we introduce an innovative PEFT method, **TeamLoRA**, consisting of a collaboration and competition module for LoRA experts, thus achieving the right balance of effectiveness and efficiency:**(i)** For *collaboration*, we introduce a novel knowledge sharing and organization mechanism designed to optimize hierarchical learning while enhancing the efficiency of model training and inference.**(ii)** For *competition*, we propose leveraging a game-theoretic interaction mechanism for experts, encouraging experts to transfer their domain-specific knowledge while facing diverse downstream tasks, thus enhancing the performance.By doing so, TeamLoRA elegantly connects the experts as a “*Team*” with internal collaboration and competition, enabling a faster and more accurate PEFT paradigm. Meanwhile, we curate a **Comprehensive Multi-Task Evaluation (CME)** benchmark to thoroughly assess the capability of multi-task learning. Experiments conducted on our CME and other benchmarks indicate the effectiveness and efficiency of TeamLoRA. Our project is available at https://github.com/DCDmllm/TeamLoRA.

pdf bib
RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection
Wenjun Hou | Yi Cheng | Kaishuai Xu | Heng Li | Yan Hu | Wenjie Li | Jiang Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration. To address this limitation, we propose Radar, a framework for enhancing radiology report generation with supplementary knowledge injection. Radar improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model’s acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, Radar generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy

pdf bib
NCRE: A Benchmark for Document-level Nominal Compound Relation Extraction
Jincheng Cao | Bobo Li | Jiang Liu | Donghong Ji
Proceedings of the 31st International Conference on Computational Linguistics

Entity and relation extraction is a conventional task in the field of information extraction. Existing work primarily focuses on detecting specific relations between entities, often constrained to particular fields and lacking general applicability. In response, we propose a novel task: nominal compound relation extraction (NCRE), which concentrates on abstract and broadly applicable relation extraction between noun phrases. This task diverges significantly from traditional entity and relation extraction in two key respects. Firstly, our task involves general nominal compounds rather than named entities, which are longer and encompass a broader scope, presenting significant challenges for extraction. Secondly, relation extraction in NCRE demands an in-depth understanding of context to detect abstract relations. We manually annotate a high-quality Chinese dataset for the NCRE task and develop a model incorporating the rotary position-enhanced word pair (RoWP) detection schema. Experimental results demonstrate the efficiency of our RoWP model over previous baselines, while the suboptimal F1 scores indicate that NCRE remains a challenging task. Our code and data are available at https://github.com/yeecjc/NCRE.

pdf bib
Align2LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation
Hongzhe Huang | Jiang Liu | Zhewen Yu | Li Cai | Dian Jiao | Wenqiao Zhang | Siliang Tang | Juncheng Li | Hao Jiang | Haoyuan Li | Yueting Zhuang
Findings of the Association for Computational Linguistics: ACL 2025

Recent advances in Multi-modal Large Language Models (MLLMs), such as LLaVA-series models, are driven by massive machine-generated instruction-following data tuning. Such automatic instruction collection pipelines, however, inadvertently introduce significant variability in data quality. This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment, to compress this vast corpus of machine-generated multimodal instructions to a compact and high-quality form: (i) For human preference alignment, we have collected a machine-generated multimodal instruction dataset and established a comprehensive set of both subjective and objective criteria to guide the data quality assessment critically from human experts. By doing so, a reward model was trained on the annotated dataset to internalize the nuanced human understanding of instruction alignment. (ii) For LLM preference alignment, given the instruction selected by the reward model, we propose leveraging the inner LLM used in MLLM to align the writing style of visual instructions with that of the inner LLM itself, resulting in LLM-aligned instruction improvement. Extensive experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%. Impressively, by aggressively reducing the training instructions from 158k to 14k (9× smaller), our model consistently outperforms its full-size dataset counterpart across various MLLM benchmarks. Our project is available at https://github.com/DCDmllm/Align2LLaVA.

2024

pdf bib
ICON: Improving Inter-Report Consistency in Radiology Report Generation via Lesion-aware Mixup Augmentation
Wenjun Hou | Yi Cheng | Kaishuai Xu | Yan Hu | Wenjie Li | Jiang Liu
Findings of the Association for Computational Linguistics: EMNLP 2024

Previous research on radiology report generation has made significant progress in terms of increasing the clinical accuracy of generated reports. In this paper, we emphasize another crucial quality that it should possess, i.e., inter-report consistency, which refers to the capability of generating consistent reports for semantically equivalent radiographs. This quality is even of greater significance than the overall report accuracy in terms of ensuring the system’s credibility, as a system prone to providing conflicting results would severely erode users’ trust. Regrettably, existing approaches struggle to maintain inter-report consistency, exhibiting biases towards common patterns and susceptibility to lesion variants. To address this issue, we propose ICON, which improves the inter-report consistency of radiology report generation. Aiming to enhance the system’s ability to capture similarities in semantically equivalent lesions, our approach first involves extracting lesions from input images and examining their characteristics. Then, we introduce a lesion-aware mixup technique to ensure that the representations of the semantically equivalent lesions align with the same attributes, achieved through a linear combination during the training phase. Extensive experiments on three publicly available chest X-ray datasets verify the effectiveness of our approach, both in terms of improving the consistency and accuracy of the generated reports.

2023

pdf bib
ORGAN: Observation-Guided Radiology Report Generation via Tree Reasoning
Wenjun Hou | Kaishuai Xu | Yi Cheng | Wenjie Li | Jiang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper explores the task of radiology report generation, which aims at generating free-text descriptions for a set of radiographs. One significant challenge of this task is how to correctly maintain the consistency between the images and the lengthy report. Previous research explored solving this issue through planning-based methods, which generate reports only based on high-level plans. However, these plans usually only contain the major observations from the radiographs (e.g., lung opacity), lacking much necessary information, such as the observation characteristics and preliminary clinical diagnoses. To address this problem, the system should also take the image information into account together with the textual plan and perform stronger reasoning during the generation process. In this paper, we propose an Observation-guided radiology Report Generation framework (ORGan). It first produces an observation plan and then feeds both the plan and radiographs for report generation, where an observation graph and a tree reasoning mechanism are adopted to precisely enrich the plan information by capturing the multi-formats of each observation. Experimental results demonstrate that our framework outperforms previous state-of-the-art methods regarding text quality and clinical efficacy.

pdf bib
RECAP: Towards Precise Radiology Report Generation via Dynamic Disease Progression Reasoning
Wenjun Hou | Yi Cheng | Kaishuai Xu | Wenjie Li | Jiang Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

Automating radiology report generation can significantly alleviate radiologists’ workloads. Previous research has primarily focused on realizing highly concise observations while neglecting the precise attributes that determine the severity of diseases (e.g., small pleural effusion). Since incorrect attributes will lead to imprecise radiology reports, strengthening the generation process with precise attribute modeling becomes necessary. Additionally, the temporal information contained in the historical records, which is crucial in evaluating a patient’s current condition (e.g., heart size is unchanged), has also been largely disregarded. To address these issues, we propose RECAP, which generates precise and accurate radiology reports via dynamic disease progression reasoning. Specifically, RECAP first predicts the observations and progressions (i.e., spatiotemporal information) given two consecutive radiographs. It then combines the historical records, spatiotemporal information, and radiographs for report generation, where a disease progression graph and dynamic progression reasoning mechanism are devised to accurately select the attributes of each observation and progression. Extensive experiments on two publicly available datasets demonstrate the effectiveness of our model.