2025
pdf
bib
abs
Improving Medical Large Vision-Language Models with Abnormal-Aware Feedback
Yucheng Zhou
|
Lingran Song
|
Jianbing Shen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Existing Medical Large Vision-Language Models (Med-LVLMs), encapsulating extensive medical knowledge, demonstrate excellent capabilities in understanding medical images. However, there remain challenges in visual localization in medical images, which is crucial for abnormality detection and interpretation. To address these issues, we propose a novel UMed-LVLM designed to unveil medical abnormalities. Specifically, we collect a Medical Abnormalities Unveiling (MAU) dataset and propose a two-stage training method for UMed-LVLM training. To collect MAU dataset, we propose a prompt method utilizing the GPT-4V to generate diagnoses based on identified abnormal areas in medical images. Moreover, the two-stage training method includes Abnormal-Aware Instruction Tuning and Abnormal-Aware Rewarding, comprising Relevance Reward, Abnormal Localization Reward and Vision Relevance Reward. Experimental results demonstrate that our UMed-LVLM significantly outperforms existing Med-LVLMs in identifying and understanding medical abnormalities, achieving a 58% improvement over the baseline. In addition, this work shows that enhancing the abnormality detection capabilities of Med-LVLMs significantly improves their understanding of medical images and generalization capability. Our code and data release at URL.
pdf
bib
abs
Self-Rewarding Large Vision-Language Models for Optimizing Prompts in Text-to-Image Generation
Hongji Yang
|
Yucheng Zhou
|
Wencheng Han
|
Jianbing Shen
Findings of the Association for Computational Linguistics: ACL 2025
Text-to-image models are powerful for producing high-quality images based on given text prompts, but crafting these prompts often requires specialized vocabulary. To address this, existing methods train rewriting models with supervision from large amounts of manually annotated data and trained aesthetic assessment models. To alleviate the dependence on data scale for model training and the biases introduced by trained models, we propose a novel prompt optimization framework, designed to rephrase a simple user prompt into a sophisticated prompt to a text-to-image model. Specifically, we employ the large vision language models (LVLMs) as the solver to rewrite the user prompt, and concurrently, employ LVLMs as a reward model to score the aesthetics and alignment of the images generated by the optimized prompt. Instead of laborious human feedback, we exploit the prior knowledge of the LVLM to provide rewards, i.e., AI feedback. Simultaneously, the solver and the reward model are unified into one model and iterated in reinforcement learning to achieve self-improvement by giving a solution and judging itself. Results on two popular datasets demonstrate that our method outperforms other strong competitors.
pdf
bib
abs
MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration
Yucheng Zhou
|
Lingran Song
|
Jianbing Shen
Findings of the Association for Computational Linguistics: ACL 2025
Recent advancements in medical Large Language Models (LLMs) have showcased their powerful reasoning and diagnostic capabilities. Despite their success, current unified multimodal medical LLMs face limitations in knowledge update costs, comprehensiveness, and flexibility. To address these challenges, we introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM). Inspired by our empirical findings highlighting the benefits of role assignment and diagnostic discernment in LLMs, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director, each embodied by an LLM-based agent. This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases. Extensive experimental evaluations conducted on a wide range of publicly accessible multimodal medical datasets, incorporating text, image, audio, and video modalities, demonstrate that MAM consistently surpasses the performance of modality-specific LLMs. Notably, MAM achieves significant performance improvements ranging from 18% to 365% compared to baseline models. Our code, data, and prompts are released at URL.
2024
pdf
bib
abs
Visual In-Context Learning for Large Vision-Language Models
Yucheng Zhou
|
Xiang Li
|
Qianning Wang
|
Jianbing Shen
Findings of the Association for Computational Linguistics: ACL 2024
In Large Visual Language Models (LVLMs), the efficacy of In-Context Learning (ICL) remains limited by challenges in cross-modal interactions and representation disparities. To overcome these challenges, we introduce a novel Visual In-Context Learning (VICL) method comprising Visual Demonstration Retrieval, Intent-Oriented Image Summarization, and Intent-Oriented Demonstration Composition. Our approach retrieves images via ”Retrieval & Rerank” paradigm, summarises images with task intent and task-specific visual parsing, and composes language-based demonstrations that reduce token count and alleviate cross-modal interaction problem. Experimental evaluations on five visual reasoning datasets demonstrate the effectiveness of our method. Moreover, our extensive experiments leverage information flow analysis to elucidate the effectiveness of our method, and investigate the impact of length and position of demonstrations for LVLM. The use of in-context unlearning further shows promise in resetting specific model knowledge without retraining.