Jiaming Li


2025

pdf bib
Making RALM Robust to Irrelevant Contexts via Layer Knowledge Guided Attention
Weijie Shi | Hao Chen | Jiaming Li | Yao Zhao | Yazhong Zhang | Qijin Chen | Jipeng Zhang | Ruiyuan Zhang | Jia Zhu | Jiajie Xu | Xiaofang Zhou
Findings of the Association for Computational Linguistics: ACL 2025

Retrieval-augmented language models (RALMs) aim to incorporate external knowledge to address the issues of factual hallucination and knowledge obsolescence faced by large language models (LLMs). Inevitably, the retrieved passages based on similarity search may be irrelevant to the given question, and the aggregation of these passages can confuse the model to give a correct answer. To improve the performance of RALM in such conditions, we propose layer-knowledge guided attention for RALMs, which harnesses the layer-wise knowledge of LLMs to optimize per-layer attention on useful passages, making the model pay attention to the most relevant content and ignore irrelevant ones. Specifically, we first systematically study LLM’s attention patterns and their relationship with the accuracy of RALM responses, where middle-focus attentions play a crucial role in selectively gathering relevant information. Based on this, a layer-wise passage estimator leverages the varied knowledge encoded across LLM layers to assess not only passage relevance scores but also associated confidences. Finally, a relevance-aware passage fusion enables selective attention to relevant passages, mitigating distractibility and positional bias of causal attention. Experiments show that our method outperforms existing methods on RALM benchmarks.

pdf bib
STORYTELLER: An Enhanced Plot-Planning Framework for Coherent and Cohesive Story Generation
Jiaming Li | Yukun Chen | Ziqiang Liu | Minghuan Tan | Lei Zhang | Yunshui Li | Run Luo | Longze Chen | Jing Luo | Ahmadreza Argha | Hamid Alinejad-Rokny | Wei Zhou | Min Yang
Findings of the Association for Computational Linguistics: ACL 2025

Stories are central to human culture, serving to share ideas, preserve traditions, and foster connections. Automatic story generation, a key advancement in artificial intelligence (AI), offers new possibilities for creating personalized content, exploring creative ideas, and enhancing interactive experiences. However, existing methods struggle to maintain narrative coherence and logical consistency. This disconnect compromises the overall storytelling experience, underscoring the need for substantial improvements. Inspired by human cognitive processes, we introduce Storyteller, a novel approach that systemically improves the coherence and consistency of automatically generated stories. Storyteller introduces a plot node structure based on linguistically grounded subject-verb-object (SVO) triplets, which capture essential story events and ensure a consistent logical flow. Unlike previous methods, Storyteller integrates two dynamic modules—the STORYLINE and narrative entity knowledge graph (NEKG)—that continuously interact with the story generation process. This integration produces structurally sound, cohesive and immersive narratives. Extensive experiments demonstrate that Storyteller significantly outperforms existing approaches, achieving an 84.33% average win rate through human preference evaluation. At the same time, it is also far ahead in other aspects including creativity, coherence, engagement, and relevance.

2024

pdf bib
Ruler: A Model-Agnostic Method to Control Generated Length for Large Language Models
Jiaming Li | Lei Zhang | Yunshui Li | Ziqiang Liu | Yuelin Bai | Run Luo | Longze Chen | Min Yang
Findings of the Association for Computational Linguistics: EMNLP 2024

The instruction-following ability of large language models enables humans to interact with AI agents in a natural way. However, when required to generate responses of a specific length, large language models often struggle to meet users’ needs due to their inherent difficulty in accurately perceiving numerical constraints. To explore the ability of large language models to control the length of generated responses, we propose the Target Length Generation Task (TLG) and design two metrics, Precise Match (PM) and Flexible Match (FM) to evaluate the model’s performance in adhering to specified response lengths. Furthermore, we introduce a novel, model-agnostic approach called Ruler, which employs Meta Length Tokens (MLTs) to enhance the instruction-following ability of large language models under length-constrained instructions. Specifically, Ruler equips LLMs with the ability to generate responses of a specified length based on length constraints within the instructions. Moreover, Ruler can automatically generate appropriate MLT when length constraints are not explicitly provided, demonstrating excellent versatility and generalization. Comprehensive experiments show the effectiveness of Ruler across different LLMs on Target Length Generation Task, e.g., at All Level 27.97 average gain on PM, 29.57 average gain on FM. In addition, we conduct extensive ablation experiments to further substantiate the efficacy and generalization of Ruler. Our code and data is available on the internet.