2025
pdf
bib
abs
Investigating and Enhancing the Robustness of Large Multimodal Models Against Temporal Inconsistency
Jiafeng Liang
|
Shixin Jiang
|
Xuan Dong
|
Ning Wang
|
Zheng Chu
|
Hui Su
|
Jinlan Fu
|
Ming Liu
|
See-Kiong Ng
|
Bing Qin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Multimodal Models (LMMs) have recently demonstrated impressive performance on general video comprehension benchmarks. Nevertheless, for broader applications, the robustness of their temporal analysis capability needs to be thoroughly investigated yet predominantly ignored. Motivated by this, we propose a novel temporal robustness benchmark (TemRobBench), which introduces temporal inconsistency perturbations separately at the visual and textual modalities to assess the robustness of models. We evaluate 16 mainstream LMMs and find that they exhibit over-reliance on prior knowledge and textual context in adversarial environments, while ignoring the actual temporal dynamics in the video. To mitigate this issue, we design panoramic direct preference optimization (PanoDPO), which encourages LMMs to incorporate both visual and linguistic feature preferences simultaneously. Experimental results show that PanoDPO can effectively enhance the model’s robustness and reliability in temporal analysis.
pdf
bib
abs
Self-Critique Guided Iterative Reasoning for Multi-hop Question Answering
Zheng Chu
|
Huiming Fan
|
Jingchang Chen
|
Qianyu Wang
|
Mingda Yang
|
Jiafeng Liang
|
Zhongjie Wang
|
Hao Li
|
Guo Tang
|
Ming Liu
|
Bing Qin
Findings of the Association for Computational Linguistics: ACL 2025
Although large language models (LLMs) have demonstrated remarkable reasoning capabilities, they still face challenges in knowledge-intensive multi-hop reasoning. Recent work explores iterative retrieval to address complex problems. However, the absence of intermediate guidance often leads to inaccurate retrieval and intermediate reasoning errors, leading to incorrect reasoning. To address these, we propose Self-Critique Guided Iterative Reasoning (SiGIR), which uses self-critique feedback to guide the iterative reasoning process. Specifically, through end-to-end training, we enable the model to iteratively address complex problems via question decomposition, while also being able to self-evaluate its intermediate reasoning steps. During iterative reasoning, the model engages in branching exploration and employs self-evaluation to guide the selection of promising reasoning trajectories. Extensive experiments on three multi-hop reasoning datasets demonstrate the effectiveness of our proposed method, surpassing the previous SOTA by 8.6%. Furthermore, our thorough analysis offers insights for future research. Our code, data, and models are available at https://github.com/zchuz/SiGIR-MHQA.
pdf
bib
abs
Breaking the Reasoning Barrier A Survey on LLM Complex Reasoning through the Lens of Self-Evolution
Tao He
|
Hao Li
|
Jingchang Chen
|
Runxuan Liu
|
Yixin Cao
|
Lizi Liao
|
Zihao Zheng
|
Zheng Chu
|
Jiafeng Liang
|
Ming Liu
|
Bing Qin
Findings of the Association for Computational Linguistics: ACL 2025
The release of OpenAI’s O1 and subsequent projects like DeepSeek R1 has significantly advanced research on complex reasoning in LLMs. This paper systematically analyzes existing reasoning studies from the perspective of self-evolution, structured into three components: data evolution, model evolution, and self-evolution. Data evolution explores methods to generate higher-quality reasoning training data. Model evolution focuses on training strategies to boost reasoning capabilities. Self-evolution research autonomous system evolution via iterating cycles of data and model evolution. We further discuss the scaling law of self-evolution and analyze representative O1-like works through this lens. By summarizing advanced methods and outlining future directions, this paper aims to drive advancements in LLMs’ reasoning abilities.
pdf
bib
abs
From Specific-MLLMs to Omni-MLLMs: A Survey on MLLMs Aligned with Multi-modalities
Shixin Jiang
|
Jiafeng Liang
|
Jiyuan Wang
|
Xuan Dong
|
Heng Chang
|
Weijiang Yu
|
Jinhua Du
|
Ming Liu
|
Bing Qin
Findings of the Association for Computational Linguistics: ACL 2025
To tackle complex tasks in real-world scenarios, more researchers are focusing on Omni-MLLMs, which aim to achieve omni-modal understanding and generation. Beyond the constraints of any specific non-linguistic modality, Omni-MLLMs map various non-linguistic modalities into the embedding space of LLMs and enable the interaction and understanding of arbitrary combinations of modalities within a single model. In this paper, we systematically investigate relevant research and provide a comprehensive survey of Omni-MLLMs. Specifically, we first explain the four core components of Omni-MLLMs for unified multi-modal modeling with a meticulous taxonomy that offers novel perspectives. Then, we introduce the effective integration achieved through two-stage training and discuss the corresponding datasets as well as evaluation. Furthermore, we summarize the main challenges of current Omni-MLLMs and outline future directions. We hope this paper serves as an introduction for beginners and promotes the advancement of related research. Resources have been made publicly availableat https://github.com/threegold116/Awesome-Omni-MLLMs.
2024
pdf
bib
abs
CogGPT: Unleashing the Power of Cognitive Dynamics on Large Language Models
Yaojia Lv
|
Haojie Pan
|
Zekun Wang
|
Jiafeng Liang
|
Yuanxing Liu
|
Ruiji Fu
|
Ming Liu
|
Zhongyuan Wang
|
Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2024
Cognitive dynamics, which refer to the evolution in human cognitive processes, are pivotal to advance human understanding of the world. Recent advancements in large language models (LLMs) highlight their potential for cognitive simulation. However, these LLM-based cognitive studies primarily focus on replicating human cognition in specific contexts, overlooking the inherently dynamic nature of cognition. To bridge this gap, we explore the cognitive dynamics of LLMs and present a corresponding task inspired by longitudinal studies. Toward the task, we develop CogBench, a novel benchmark to assess the cognitive dynamics of LLMs and validate it through participant surveys. We also design two evaluation metrics for CogBench, including Authenticity and Rationality. Recognizing the inherent static nature of LLMs, we further introduce CogGPT for the task, which features an innovative iterative cognitive mechanism to develop lifelong cognitive dynamics. Empirical results demonstrate the superiority of CogGPT over several existing methods, particularly in its ability to facilitate role-specific cognitive dynamics under continuous information flows. We will release the code and data to enable further research.
pdf
bib
abs
Infrared-LLaVA: Enhancing Understanding of Infrared Images in Multi-Modal Large Language Models
Shixin Jiang
|
Zerui Chen
|
Jiafeng Liang
|
Yanyan Zhao
|
Ming Liu
|
Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2024
Expanding the understanding capabilities of multi-modal large language models (MLLMs) for infrared modality is a challenge due to the single-modality nature and limited amount of training data. Existing methods typically construct a uniform embedding space for cross-modal alignment and leverage abundant visual image data to indirectly understand infrared images. However, they ignore the supervisory signals of infrared-modality-specific attributes, which may lead to biased understanding of infrared images. To address this issue, we propose a debating multi-agent generation system which transfers knowledge from visible images to generate infrared image-text pairs and infrared instruction data. Moreover, we construct an infrared question-answering benchmark based on common infrared tasks. Experimental results from incremental fine-tuning on existing models and our Infrared-LLaVA-7B trained from scratch on infrared data demonstrate the effectiveness of the generated data and the feasibility of the generation approach.
pdf
bib
abs
SmartTrim: Adaptive Tokens and Attention Pruning for Efficient Vision-Language Models
Zekun Wang
|
Jingchang Chen
|
Wangchunshu Zhou
|
Haichao Zhu
|
Jiafeng Liang
|
Liping Shan
|
Ming Liu
|
Dongliang Xu
|
Qing Yang
|
Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Despite achieving remarkable performance on various vision-language tasks, Transformer-based Vision-Language Models (VLMs) suffer from redundancy in inputs and parameters, significantly hampering their efficiency in real-world applications. Moreover, the degree of redundancy in token representations and model parameters, such as attention heads, varies significantly for different inputs. In light of the challenges, we propose SmartTrim, an adaptive acceleration framework for VLMs, which adjusts the computational overhead per instance. Specifically, we integrate lightweight modules into the original backbone to identify and prune redundant token representations and attention heads within each layer. Furthermore, we devise a self-distillation strategy to enhance the consistency between the predictions of the pruned model and its fully-capacity counterpart. Experimental results across various vision-language tasks consistently demonstrate that SmartTrim accelerates the original model by 2-3 times with minimal performance degradation, highlighting the effectiveness and efficiency compared to previous approaches. Code will be available at https://github.com/kugwzk/SmartTrim.
2023
pdf
bib
abs
MTGER: Multi-view Temporal Graph Enhanced Temporal Reasoning over Time-Involved Document
Zheng Chu
|
Zekun Wang
|
Jiafeng Liang
|
Ming Liu
|
Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2023
The facts and time in the document are intricately intertwined, making temporal reasoning over documents challenging. Previous work models time implicitly, making it difficult to handle such complex relationships. To address this issue, we propose MTGER, a novel Multi-view Temporal Graph Enhanced Reasoning framework for temporal reasoning over time-involved documents. Concretely, MTGER explicitly models the temporal relationships among facts by multi-view temporal graphs. On the one hand, the heterogeneous temporal graphs explicitly model the temporal and discourse relationships among facts; on the other hand, the multi-view mechanism captures both time-focused and fact-focused information, allowing the two views to complement each other through adaptive fusion. To further improve the implicit reasoning capability of the model, we design a self-supervised time-comparing objective. Extensive experimental results demonstrate the effectiveness of our method on the TimeQA and SituatedQA datasets. Furthermore, MTGER gives more consistent answers under question perturbations.