This Ph.D. proposal introduces a plan to develop a computational framework to identify Self-aspects in text. The Self is a multifaceted construct and it is reflected in language. While it is described across disciplines like cognitive science and phenomenology, it remains underexplored in natural language processing (NLP). Many of the aspects of the Self align with psychological and other well-researched phenomena (e.g., those related to mental health), highlighting the need for systematic NLP-based analysis. In line with this, we plan to introduce an ontology of Self-aspects and a gold-standard annotated dataset. Using this foundation, we will develop and evaluate conventional discriminative models, generative large language models, and embedding-based retrieval approaches against four main criteria: interpretability, ground-truth adherence, accuracy, and computational efficiency. Top-performing models will be applied in case studies in mental health and empirical phenomenology.
Dehumanisation involves the perception and/or treatment of a social group’s members as less than human. This phenomenon is rarely addressed with computational linguistic techniques. We adapt a recently proposed approach for English, making it easier to transfer to other languages and to evaluate, introducing a new sentiment resource, the use of zero-shot cross-lingual valence and arousal detection, and a new method for statistical significance testing. We then apply it to study attitudes to migration expressed in Slovene newspapers, to examine changes in the Slovene discourse on migration between the 2015-16 migration crisis following the war in Syria and the 2022-23 period following the war in Ukraine. We find that while this discourse became more negative and more intense over time, it is less dehumanising when specifically addressing Ukrainian migrants compared to others.
This paper presents our ensembling solutions for detecting signs of depression in social media text, as part of the Shared Task at LT-EDI@RANLP 2023. By leveraging social media posts in English, the task involves the development of a system to accurately classify them as presenting signs of depression of one of three levels: “severe”, “moderate”, and “not depressed”. We verify the hypothesis that combining contextual information from a language model with local domain-specific features can improve the classifier’s performance. We do so by evaluating: (1) two global classifiers (support vector machine and logistic regression); (2) contextual information from language models; and (3) the ensembling results.