James Evans


2025

pdf bib
Value Compass Benchmarks: A Comprehensive, Generative and Self-Evolving Platform for LLMs’ Value Evaluation
Jing Yao | Xiaoyuan Yi | Shitong Duan | Jindong Wang | Yuzhuo Bai | Muhua Huang | Yang Ou | Scarlett Li | Peng Zhang | Tun Lu | Zhicheng Dou | Maosong Sun | James Evans | Xing Xie
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

As large language models (LLMs) are gradually integrated into human daily life, assessing their underlying values becomes essential for understanding their risks and alignment with specific preferences. Despite growing efforts, current value evaluation methods face two key challenges. C1. Evaluation Validity: Static benchmarks fail to reflect intended values or yield informative results due to data contamination or a ceiling effect. C2. Result Interpretation: They typically reduce the pluralistic and often incommensurable values to one-dimensional scores, which hinders users from gaining meaningful insights and guidance. To address these challenges, we present Value Compass Benchmarks, the first dynamic, online and interactive platform specially devised for comprehensive value diagnosis of LLMs. It (1) grounds evaluations in multiple basic value systems from social science; (2) develops a generative evolving evaluation paradigm that automatically creates real-world test items co-evolving with ever-advancing LLMs; (3) offers multi-faceted result interpretation, including (i) fine-grained scores and case studies across 27 value dimensions for 33 leading LLMs, (ii) customized comparisons, and (iii) visualized analysis of LLMs’ alignment with cultural values. We hope Value Compass Benchmarks serves as a navigator for further enhancing LLMs’ safety and alignment, benefiting their responsible and adaptive development.

2024

pdf bib
Hidden Persuaders: LLMs’ Political Leaning and Their Influence on Voters
Yujin Potter | Shiyang Lai | Junsol Kim | James Evans | Dawn Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Do LLMs have political leanings and are LLMs able to shift our political views? This paper explores these questions in the context of the 2024 U.S. presidential election. Through a voting simulation, we demonstrate 18 open-weight and closed-source LLMs’ political preference for Biden over Trump. We show how Biden-leaning becomes more pronounced in instruction-tuned and reinforced models compared to their base versions by analyzing their responses to political questions related to the two nominees. We further explore the potential impact of LLMs on voter choice by recruiting 935 U.S. registered voters. Participants interacted with LLMs (Claude-3, Llama-3, and GPT-4) over five exchanges. Intriguingly, although LLMs were not asked to persuade users to support Biden, about 20% of Trump supporters reduced their support for Trump after LLM interaction. This result is noteworthy given that many studies on the persuasiveness of political campaigns have shown minimal effects in presidential elections. Many users also expressed a desire for further interaction with LLMs on political subjects. Further research on how LLMs affect users’ political views is required, as their use becomes more widespread.

2021

pdf bib
Aligning Multidimensional Worldviews and Discovering Ideological Differences
Jeremiah Milbauer | Adarsh Mathew | James Evans
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The Internet is home to thousands of communities, each with their own unique worldview and associated ideological differences. With new communities constantly emerging and serving as ideological birthplaces, battlegrounds, and bunkers, it is critical to develop a framework for understanding worldviews and ideological distinction. Most existing work, however, takes a predetermined view based on political polarization: the “right vs. left” dichotomy of U.S. politics. In reality, both political polarization – and worldviews more broadly – transcend one-dimensional difference, and deserve a more complete analysis. Extending the ability of word embedding models to capture the semantic and cultural characteristics of their training corpora, we propose a novel method for discovering the multifaceted ideological and worldview characteristics of communities. Using over 1B comments collected from the largest communities on Reddit.com representing ~40% of Reddit activity, we demonstrate the efficacy of this approach to uncover complex ideological differences across multiple axes of polarization.

2015

pdf bib
Fast, Flexible Models for Discovering Topic Correlation across Weakly-Related Collections
Jingwei Zhang | Aaron Gerow | Jaan Altosaar | James Evans | Richard Jean So
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
The Modular Community Structure of Linguistic Predication Networks
Aaron Gerow | James Evans
Proceedings of TextGraphs-9: the workshop on Graph-based Methods for Natural Language Processing