Jinyan Su


2024

pdf
Adapting Fake News Detection to the Era of Large Language Models
Jinyan Su | Claire Cardie | Preslav Nakov
Findings of the Association for Computational Linguistics: NAACL 2024

In the age of large language models (LLMs) and the widespread adoption of AI-driven content creation, the landscape of information dissemination has witnessed a paradigm shift. With the proliferation of both human-written and machine-generated real and fake news, robustly and effectively discerning the veracity of news articles has become an intricate challenge. While substantial research has been dedicated to fake news detection, it has either assumed that all news articles are human-written or has abruptly assumed that all machine-generated news was fake. Thus, a significant gap exists in understanding the interplay between machine-paraphrased real news, machine-generated fake news, human-written fake news, and human-written real news. In this paper, we study this gap by conducting a comprehensive evaluation of fake news detectors trained in various scenarios. Our primary objectives revolve around the following pivotal question: How can we adapt fake news detectors to the era of LLMs?Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa. Moreover, due to the bias of detectors against machine-generated texts (CITATION), they should be trained on datasets with a lower machine-generated news ratio than the test set. Building on our findings, we provide a practical strategy for the development of robust fake news detectors.

pdf
M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection
Yuxia Wang | Jonibek Mansurov | Petar Ivanov | Jinyan Su | Artem Shelmanov | Akim Tsvigun | Chenxi Whitehouse | Osama Mohammed Afzal | Tarek Mahmoud | Toru Sasaki | Thomas Arnold | Alham Fikri Aji | Nizar Habash | Iryna Gurevych | Preslav Nakov
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries. However, this has also raised concerns about the potential misuse of such texts in journalism, education, and academia. In this study, we strive to create automated systems that can detect machine-generated texts and pinpoint potential misuse. We first introduce a large-scale benchmark M4, which is a multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Through an extensive empirical study of this dataset, we show that it is challenging for detectors to generalize well on instances from unseen domains or LLMs. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and that there is a lot of room for improvement. We believe that our dataset will enable future research towards more robust approaches to this pressing societal problem. The dataset is available at https://github.com/mbzuai-nlp/M4

pdf
M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection
Yuxia Wang | Jonibek Mansurov | Petar Ivanov | Jinyan Su | Artem Shelmanov | Akim Tsvigun | Osama Mohammed Afzal | Tarek Mahmoud | Giovanni Puccetti | Thomas Arnold | Alham Aji | Nizar Habash | Iryna Gurevych | Preslav Nakov
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain and multi-generator corpus of MGTs — M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.

pdf
SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection
Yuxia Wang | Jonibek Mansurov | Petar Ivanov | Jinyan Su | Artem Shelmanov | Akim Tsvigun | Osama Mohammed Afzal | Tarek Mahmoud | Giovanni Puccetti | Thomas Arnold
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.

2023

pdf
DetectLLM: Leveraging Log Rank Information for Zero-Shot Detection of Machine-Generated Text
Jinyan Su | Terry Zhuo | Di Wang | Preslav Nakov
Findings of the Association for Computational Linguistics: EMNLP 2023

With the rapid progress of Large language models (LLMs) and the huge amount of text they generate, it becomes impractical to manually distinguish whether a text is machine-generated. The growing use of LLMs in social media and education, prompts us to develop methods to detect machine-generated text, preventing malicious use such as plagiarism, misinformation, and propaganda. In this paper, we introduce two novel zero-shot methods for detecting machine-generated text by leveraging the Log-Rank information. One is called DetectLLM-LRR, which is fast and efficient, and the other is called DetectLLM-NPR, which is more accurate, but slower due to the need for perturbations. Our experiments on three datasets and seven language models show that our proposed methods improve over the state of the art by 3.9 and 1.75 AUROC points absolute. Moreover, DetectLLM-NPR needs fewer perturbations than previous work to achieve the same level of performance, which makes it more practical for real-world use. We also investigate the efficiency-performance trade-off based on users’ preference for these two measures and provide intuition for using them in practice effectively. We release the data and the code of both methods in https://github.com/mbzuai-nlp/DetectLLM.