Jeremy Qin


2025

pdf bib
SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models
Margaret Mitchell | Giuseppe Attanasio | Ioana Baldini | Miruna Clinciu | Jordan Clive | Pieter Delobelle | Manan Dey | Sil Hamilton | Timm Dill | Jad Doughman | Ritam Dutt | Avijit Ghosh | Jessica Zosa Forde | Carolin Holtermann | Lucie-Aimée Kaffee | Tanmay Laud | Anne Lauscher | Roberto L Lopez-Davila | Maraim Masoud | Nikita Nangia | Anaelia Ovalle | Giada Pistilli | Dragomir Radev | Beatrice Savoldi | Vipul Raheja | Jeremy Qin | Esther Ploeger | Arjun Subramonian | Kaustubh Dhole | Kaiser Sun | Amirbek Djanibekov | Jonibek Mansurov | Kayo Yin | Emilio Villa Cueva | Sagnik Mukherjee | Jerry Huang | Xudong Shen | Jay Gala | Hamdan Al-Ali | Tair Djanibekov | Nurdaulet Mukhituly | Shangrui Nie | Shanya Sharma | Karolina Stanczak | Eliza Szczechla | Tiago Timponi Torrent | Deepak Tunuguntla | Marcelo Viridiano | Oskar Van Der Wal | Adina Yakefu | Aurélie Névéol | Mike Zhang | Sydney Zink | Zeerak Talat
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) reproduce and exacerbate the social biases present in their training data, and resources to quantify this issue are limited. While research has attempted to identify and mitigate such biases, most efforts have been concentrated around English, lagging the rapid advancement of LLMs in multilingual settings. In this paper, we introduce a new multilingual parallel dataset SHADES to help address this issue, designed for examining culturally-specific stereotypes that may be learned by LLMs. The dataset includes stereotypes from 20 regions around the world and 16 languages, spanning multiple identity categories subject to discrimination worldwide. We demonstrate its utility in a series of exploratory evaluations for both “base” and “instruction-tuned” language models. Our results suggest that stereotypes are consistently reflected across models and languages, with some languages and models indicating much stronger stereotype biases than others.

2024

pdf bib
Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration
Jeremy Qin | Bang Liu | Quoc Dinh Nguyen
Findings of the Association for Computational Linguistics: EMNLP 2024

Black-box large language models (LLMs) are increasingly deployed in various environments, making it essential for these models to effectively convey their confidence and uncertainty, especially in high-stakes settings. However, these models often exhibit overconfidence, leading to potential risks and misjudgments. Existing techniques for eliciting and calibrating LLM confidence have primarily focused on general reasoning datasets, yielding only modest improvements. Accurate calibration is crucial for informed decision-making and preventing adverse outcomes but remains challenging due to the complexity and variability of tasks these models perform. In this work, we investigate the miscalibration behavior of black-box LLMs within the healthcare setting. We propose a novel method, Atypical Presentations Recalibration, which leverages atypical presentations to adjust the model’s confidence estimates. Our approach significantly improves calibration, reducing calibration errors by approximately 60% on three medical question answering datasets and outperforming existing methods such as vanilla verbalized confidence, CoT verbalized confidence and others. Additionally, we provide an in-depth analysis of the role of atypicality within the recalibration framework.