Jayanth Mohan


2025

pdf bib
Zero-Shot Keyphrase Generation: Investigating Specialized Instructions and Multi-sample Aggregation on Large Language Models
Jishnu Ray Chowdhury | Jayanth Mohan | Tomas Malik | Cornelia Caragea
Findings of the Association for Computational Linguistics: NAACL 2025

Keyphrases are the essential topical phrases that summarize a document. Keyphrase generation is a long-standing NLP task for automatically generating keyphrases for a given document. While the task has been comprehensively explored in the past via various models, only a few works perform some preliminary analysis of Large Language Models (LLMs) for the task. Given the impact of LLMs in the field of NLP, it is important to conduct a more thorough examination of their potential for keyphrase generation. In this paper, we attempt to meet this demand with our research agenda. Specifically, we focus on the zero-shot capabilities of open-source instruction-tuned LLMs (Phi-3, Llama-3) and the closed-source GPT-4o for this task. We systematically investigate the effect of providing task-relevant specialized instructions in the prompt. Moreover, we design task-specific counterparts to self-consistency-style strategies for LLMs and show significant benefits from our proposals over the baselines.

2024

pdf bib
Findings of the Shared Task on Multimodal Social Media Data Analysis in Dravidian Languages (MSMDA-DL)@DravidianLangTech 2024
Premjith B | Jyothish G | Sowmya V | Bharathi Raja Chakravarthi | K Nandhini | Rajeswari Natarajan | Abirami Murugappan | Bharathi B | Saranya Rajiakodi | Rahul Ponnusamy | Jayanth Mohan | Mekapati Reddy
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

This paper presents the findings of the shared task on multimodal sentiment analysis, abusive language detection and hate speech detection in Dravidian languages. Through this shared task, researchers worldwide can submit models for three crucial social media data analysis challenges in Dravidian languages: sentiment analysis, abusive language detection, and hate speech detection. The aim is to build models for deriving fine-grained sentiment analysis from multimodal data in Tamil and Malayalam, identifying abusive and hate content from multimodal data in Tamil. Three modalities make up the multimodal data: text, audio, and video. YouTube videos were gathered to create the datasets for the tasks. Thirty-nine teams took part in the competition. However, only two teams, though, turned in their findings. The macro F1-score was used to assess the submissions