Jacquie Kurland
2025
Automated main concept generation for narrative discourse assessment in aphasia
Ankita Gupta
|
Marisa Hudspeth
|
Polly Stokes
|
Jacquie Kurland
|
Brendan O’Connor
Findings of the Association for Computational Linguistics: ACL 2025
We present an interesting application of narrative understanding in the clinical assessment of aphasia, where story retelling tasks are used to evaluate a patient’s communication abilities. This clinical setting provides a framework to help operationalize narrative discourse analysis and an application-focused evaluation method for narrative understanding systems. In particular, we highlight the use of main concepts (MCs)—a list of statements that capture a story’s gist—for aphasic discourse analysis. We then propose automatically generating MCs from novel stories, which experts can edit manually, thus enabling wider adaptation of current assessment tools. We further develop a prompt ensemble method using large language models (LLMs) to automatically generate MCs for a novel story. We evaluate our method on an existing narrative summarization dataset to establish its intrinsic validity. We further apply it to a set of stories that have been annotated with MCs through extensive analysis of retells from non-aphasic and aphasic participants (Kurland et al., 2021, 2025). Our results show that our proposed method can generate most of the gold-standard MCs for stories from this dataset. Finally, we release this dataset of stories with annotated MCs to spur more research in this area.