Igor Sterner


2025

pdf bib
Minimal Pair-Based Evaluation of Code-Switching
Igor Sterner | Simone Teufel
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

There is a lack of an evaluation methodology that estimates the extent to which large language models (LLMs) use code-switching (CS) in the same way as bilinguals. Existing methods do not have wide language coverage, fail to account for the diverse range of CS phenomena, or do not scale. We propose an intervention based on minimal pairs of CS. Each minimal pair contains one naturally occurring CS sentence and one minimally manipulated variant. We collect up to 1,000 such pairs each for 11 language pairs. Our human experiments show that, for every language pair, bilinguals consistently prefer the naturally occurring CS sentence. Meanwhile our experiments with current LLMs show that the larger the model, the more consistently it assigns higher probability to the naturally occurring CS sentence than to the variant. In accordance with theoretical claims, the largest probability differences arise in those pairs where the manipulated material consisted of closed-class words.

pdf bib
Code-Switching and Syntax: A Large-Scale Experiment
Igor Sterner | Simone Teufel
Findings of the Association for Computational Linguistics: ACL 2025

The theoretical code-switching (CS) literature provides numerous pointwise investigations that aim to explain patterns in CS, i.e. why bilinguals switch language in certain positions in a sentence more often than in others. A resulting consensus is that CS can be explained by the syntax of the contributing languages. There is however no large-scale, multi-language, cross-phenomena experiment that tests this claim. When designing such an experiment, we need to make sure that the system that is predicting where bilinguals tend to switch has access only to syntactic information. We provide such an experiment here. Results show that syntax alone is sufficient for an automatic system to distinguish between sentences in minimal pairs of CS, to the same degree as bilingual humans. Furthermore, the learnt syntactic patterns generalise well to unseen language pairs.

2024

pdf bib
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Markus Frohmann | Igor Sterner | Ivan Vulić | Benjamin Minixhofer | Markus Schedl
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model — Segment any Text (SaT) — to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines — including strong LLMs — across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are readily available at https://github.com/segment-any-text/wtpsplit under the MIT license.

pdf bib
Multilingual Identification of English Code-Switching
Igor Sterner
Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)

Code-switching research depends on fine-grained language identification. In this work, we study existing corpora used to train token-level language identification systems. We aggregate these corpora with a consistent labelling scheme and train a system to identify English code-switching in multilingual text. We show that the system identifies code-switching in unseen language pairs with absolute measure 2.3-4.6% better than language-pair-specific SoTA. We also analyse the correlation between typological similarity of the languages and difficulty in recognizing code-switching.

2023

pdf bib
TongueSwitcher: Fine-Grained Identification of German-English Code-Switching
Igor Sterner | Simone Teufel
Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching

This paper contributes to German-English code-switching research. We provide the largest corpus of naturally occurring German-English code-switching, where English is included in German text, and two methods for code-switching identification. The first method is rule-based, using wordlists and morphological processing. We use this method to compile a corpus of 25.6M tweets employing German-English code-switching. In our second method, we continue pretraining of a neural language model on this corpus and classify tokens based on embeddings from this language model. Our systems establish SoTA on our new corpus and an existing German-English code-switching benchmark. In particular, we systematically study code-switching for language-ambiguous words which can only be resolved in context, and morphologically mixed words consisting of both English and German morphemes. We distribute both corpora and systems to the research community.