Haoyu He


2025

pdf bib
Scholar Inbox: Personalized Paper Recommendations for Scientists
Markus Flicke | Glenn Angrabeit | Madhav Iyengar | Vitalii Protsenko | Illia Shakun | Jovan Cicvaric | Bora Kargi | Haoyu He | Lukas Schuler | Lewin Scholz | Kavyanjali Agnihotri | Yong Cao | Andreas Geiger
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Scholar Inbox is a new open-access platform designed to address the challenges researchers face in staying current with the rapidly expanding volume of scientific literature. We provide personalized recommendations, continuous updates from open-access archives (arXiv, bioRxiv, etc.), visual paper summaries, semantic search, and a range of tools to streamline research workflows and promote open research access. The platform’s personalized recommendation system is trained on user ratings, ensuring that recommendations are tailored to individual researchers’ interests. To further enhance the user experience, Scholar Inbox also offers a map of science that provides an overview of research across domains, enabling users to easily explore specific topics. We use this map to address the cold start problem common in recommender systems, as well as an active learning strategy that iteratively prompts users to rate a selection of papers, allowing the system to learn user preferences quickly. We evaluate the quality of our recommendation system on a novel dataset of 800k user ratings, which we make publicly available, as well as via an extensive user study.

2021

pdf bib
Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing
Haoyu He | Xingjian Shi | Jonas Mueller | Sheng Zha | Mu Li | George Karypis
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing

Knowledge Distillation (KD) offers a natural way to reduce the latency and memory/energy usage of massive pretrained models that have come to dominate Natural Language Processing (NLP) in recent years. While numerous sophisticated variants of KD algorithms have been proposed for NLP applications, the key factors underpinning the optimal distillation performance are often confounded and remain unclear. We aim to identify how different components in the KD pipeline affect the resulting performance and how much the optimal KD pipeline varies across different datasets/tasks, such as the data augmentation policy, the loss function, and the intermediate representation for transferring the knowledge between teacher and student. To tease apart their effects, we propose Distiller, a meta KD framework that systematically combines a broad range of techniques across different stages of the KD pipeline, which enables us to quantify each component’s contribution. Within Distiller, we unify commonly used objectives for distillation of intermediate representations under a universal mutual information (MI) objective and propose a class of MI-objective functions with better bias/variance trade-off for estimating the MI between the teacher and the student. On a diverse set of NLP datasets, the best Distiller configurations are identified via large-scale hyper-parameter optimization. Our experiments reveal the following: 1) the approach used to distill the intermediate representations is the most important factor in KD performance, 2) among different objectives for intermediate distillation, MI-performs the best, and 3) data augmentation provides a large boost for small training datasets or small student networks. Moreover, we find that different datasets/tasks prefer different KD algorithms, and thus propose a simple AutoDistiller algorithm that can recommend a good KD pipeline for a new dataset.