Haoling Li
2025
Velocitune: A Velocity-based Dynamic Domain Reweighting Method for Continual Pre-training
Zheheng Luo
|
Xin Zhang
|
Xiao Liu
|
Haoling Li
|
Yeyun Gong
|
Qi Chen
|
Peng Cheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
It is well-known that a diverse corpus is critical for training large language models, which are typically constructed from a mixture of various domains. In general, previous efforts resort to either sampling training data from different domains with static proportions or dynamically adjusting these proportions during training to optimise pretraining performance. However, few methods addressed the complexities of domain-adaptive continual pre-training. To fill this gap, we propose Velocitune, a novel framework that dynamically assesses learning velocity and adjusts data proportions accordingly, favouring slower learning domains while de-emphasising faster learning ones, which is guided by a scaling law to estimate the desired learning goal for each domain with a less associated cost. To evaluate the effectiveness of Velocitune, we conduct experiments on a dataset focused on reasoning tasks with CodeLlama, as well as on a corpus of system commands using Llama3 and Mistral. Velocitune achieves performance gains in both math and code reasoning tasks and command-line generation benchmarks. Further analysis reveals that key factors driving Velocitune’s effectiveness include target estimation and data ordering.
2024
InsCL: A Data-efficient Continual Learning Paradigm for Fine-tuning Large Language Models with Instructions
Yifan Wang
|
Yafei Liu
|
Chufan Shi
|
Haoling Li
|
Chen Chen
|
Haonan Lu
|
Yujiu Yang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Instruction tuning effectively optimizes Large Language Models (LLMs) for downstream tasks. Due to the changing environment in real-life applications, LLMs necessitate continual task-specific adaptation without catastrophic forgetting. Considering the heavy computational cost, replay-based Continual Learning (CL) methods are the simplest and most widely used for LLMs to address the forgetting issue. However, traditional replay-based methods do not fully utilize instructions to customize the replay strategy. In this work, we propose a novel paradigm called Instruction-based Continual Learning (InsCL). InsCL dynamically replays previous data based on task similarity, calculated by Wasserstein Distance with instructions. Moreover, we further introduce an Instruction Information Metric (InsInfo) to quantify the complexity and diversity of instructions. According to InsInfo, InsCL guides the replay process more inclined to high-quality data. We conduct extensive experiments over 16 tasks with different training orders, observing consistent performance improvements of InsCL. When all tasks have been trained, InsCL achieves performance gains of 3.0 Relative Gain compared with Random Replay, and 27.96 Relative Gain compared with No Replay.