2025
pdf
bib
abs
ECLM: Entity Level Language Model for Spoken Language Understanding with Chain of Intent
Shangjian Yin
|
Peijie Huang
|
JiaTian Chen
|
Haojing Huang
|
Yuhong Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) have demonstrated impressive capabilities in language generation and general task performance. However, their application to spoken language understanding (SLU) remains challenging, particularly for token-level tasks, where the autoregressive nature of LLMs often leads to misalignment issues. They also struggle to capture nuanced interrelations in semantic-level tasks through direct fine-tuning alone. To address these challenges, we propose the Entity-level Language Model (ECLM) framework, which reformulates slot-filling as an entity recognition task and introduces a novel concept, Chain of Intent, to enable step-by-step multi-intent recognition. Experimental results show that ECLM significantly outperforms strong baselines such as Uni-MIS, achieving gains of 3.7% on MixATIS and 3.1% on MixSNIPS. Compared to standard supervised fine-tuning of LLMs, ECLM further achieves improvements of 8.5% and 21.2% on these datasets, respectively. Our code is available at https://github.com/SJY8460/ECLM.
pdf
bib
abs
Rethinking the Roles of Large Language Models in Chinese Grammatical Error Correction
Yinghui Li
|
Shang Qin
|
Jingheng Ye
|
Haojing Huang
|
Yangning Li
|
Shu-Yu Guo
|
Libo Qin
|
Xuming Hu
|
Wenhao Jiang
|
Hai-Tao Zheng
|
Philip S. Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)
Recently, Large Language Models (LLMs) have been widely studied by researchers for their roles in various downstream NLP tasks. As a fundamental task in the NLP field, Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences. Previous studies have shown that LLMs’ performance as correctors on CGEC remains unsatisfactory due to the challenging nature of the task. To promote the CGEC field to better adapt to the era of LLMs, we rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC. Considering the rich grammatical knowledge stored in LLMs and their powerful semantic understanding capabilities, we utilize LLMs as explainers to provide explanation information to the CGEC small models during error correction, aiming to enhance performance. We also use LLMs as evaluators to bring more reasonable CGEC evaluations, thus alleviating the troubles caused by the subjectivity of the CGEC task. In particular, our work is also an active exploration of how LLMs and small models better collaborate in downstream tasks. Extensive experiment and detailed analyses on widely used datasets verify the effectiveness of our intuition and the proposed methods.
2024
pdf
bib
abs
Towards Real-World Writing Assistance: A Chinese Character Checking Benchmark with Faked and Misspelled Characters
Yinghui Li
|
Zishan Xu
|
Shaoshen Chen
|
Haojing Huang
|
Yangning Li
|
Shirong Ma
|
Yong Jiang
|
Zhongli Li
|
Qingyu Zhou
|
Hai-Tao Zheng
|
Ying Shen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Writing assistance aims to improve the correctness and quality of input texts, with character checking being crucial in detecting and correcting wrong characters. In the real world where handwriting occupies the vast majority, characters that humans get wrong include faked characters (i.e., untrue characters created due to writing errors) and misspelled characters (i.e., true characters used incorrectly due to spelling errors). However, existing datasets and related studies only focus on misspelled characters that can be represented by computer text encoding systems, thereby ignoring faked characters which are more common and difficult. To break through this dilemma, we present Visual-C3, a human-annotated Visual Chinese Character Checking dataset with faked and misspelled Chinese characters. To the best of our knowledge, Visual-C3 is the first real-world visual and the largest human-crafted dataset for the Chinese character checking scenario. Additionally, we also propose and evaluate novel baseline methods on Visual-C3. Extensive empirical results and analyses show that Visual-C3 is high-quality yet challenging. As the first study focusing on Chinese faked characters, the dataset and the baseline methods are publicly available at https://github.com/THUKElab/Visual-C3.
pdf
bib
abs
Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness
Jian Li
|
Haojing Huang
|
Yujia Zhang
|
Pengfei Xu
|
Xi Chen
|
Rui Song
|
Lida Shi
|
Jingwen Wang
|
Hao Xu
Findings of the Association for Computational Linguistics: EMNLP 2024
Recently, there has been significant interest in replacing the reward model in Reinforcement Learning with Human Feedback (RLHF) methods for Large Language Models (LLMs), such as Direct Preference Optimization (DPO) and its variants. These approaches commonly use a binary cross-entropy mechanism on pairwise samples, i.e., minimizing and maximizing the loss based on preferred or dis-preferred responses, respectively. However, while this training strategy omits the reward model, it also overlooks the varying preference degrees within different responses. We hypothesize that this is a key factor hindering LLMs from sufficiently understanding human preferences. To address this problem, we propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss, thereby helping LLMs improve their ability to understand the degree of preference. Extensive experiments are conducted on two widely used datasets of different tasks. The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods and significantly boost their performance to achieve state-of-the-art performance. We also conduct detailed analyses to offer comprehensive insights into SPO, which verifies its effectiveness. The code is available at https://github.com/lijian16/SPO.
2023
pdf
bib
abs
A Frustratingly Easy Plug-and-Play Detection-and-Reasoning Module for Chinese Spelling Check
Haojing Huang
|
Jingheng Ye
|
Qingyu Zhou
|
Yinghui Li
|
Yangning Li
|
Feng Zhou
|
Hai-Tao Zheng
Findings of the Association for Computational Linguistics: EMNLP 2023
In recent years, Chinese Spelling Check (CSC) has been greatly improved by designing task-specific pre-training methods or introducing auxiliary tasks, which mostly solve this task in an end-to-end fashion. In this paper, we propose to decompose the CSC workflow into detection, reasoning, and searching subtasks so that the rich external knowledge about the Chinese language can be leveraged more directly and efficiently. Specifically, we design a plug-and-play detection-and-reasoning module that is compatible with existing SOTA non-autoregressive CSC models to further boost their performance. We find that the detection-and-reasoning module trained for one model can also benefit other models. We also study the primary interpretability provided by the task decomposition. Extensive experiments and detailed analyses demonstrate the effectiveness and competitiveness of the proposed module.