Reinforcement Learning from Human Feedback (RLHF) has been shown to effectively align large language models (LLMs) with human knowledge. However, the lack of human preference labels remains a significant bottleneck when applying RLHF to a downstream domain. Humans in RLHF play a critical role in injecting reasoning preferences into LLM, and we assume the reasoning process underlying human assessments may potentially be replaced by reasoning pathways derived from Knowledge Graphs (KGs). Inspired by this assumption, we propose Reinforcement Learning from Knowledge Graph Feedback (RLKGF), a novel method that leverages KG semantics and structure to derive RL rewards in the absence of manual annotations. Unlike Reinforcement Learning from AI Feedback (RLAIF), RLKGF directly integrates human priors encoded in KGs as the reward model, aligning LLM responses with expert knowledge without additional preference labeling or reward model training. RLKGF structures context-relevant facts into knowledge subgraphs and defines rewards by simulating information flow across semantic and logical connections between question and candidate response entities. Experiments on three public and one private medical dialogue dataset demonstrate that RLKGF significantly outperforms the competitive RLAIF in improving LLM diagnostic accuracy. The code is available at
https://github.com/YanPioneer/RLKGF.
Chain-of-thought Distillation (CoTD) aims at distilling Chain-of-thought (CoT) reasoning ability of large language models (LLMs) to much smaller student models. The core of CoTD is using a large teacher model to generate rationales and fine-tune smaller student models. However, current Chain-of-thought Distillation works have the following limitations: 1) Student models are separately distilled from specific reasoning tasks and lack a collaboration mechanism, hindering the enhancement of reasoning performance through collaboration among various reasoning tasks. 2) The parameter update of student models severely harms the CoT reasoning ability on other unseen reasoning tasks not included in the distillation process. In this work, we introduce a novel CoT Distillation method, MoDE-CoTD, which decouples the CoT reasoning abilities out of the student model by distilling multiple LoRA-Experts and freezing the parameters of the student model. Sequentially, LoRA-Experts are combined and adapted to handle both seen and unseen reasoning tasks, enabling collaboration among diverse reasoning tasks to further enhance CoT reasoning performance. Experimental results on 14 datasets (including 4 unseen datasets) demonstrate the strength of MoDE-CoTD, with an average accuracy gain of 6.3% on seen datasets and 7.8% on unseen datasets.
In textual question answering (TQA) systems, complex questions often require retrieving multiple textual fact chains with multiple reasoning steps. While existing benchmarks are limited to single-chain or single-hop retrieval scenarios. In this paper, we propose to conduct Graph-Hop —— a novel multi-chains and multi-hops retrieval and reasoning paradigm in complex question answering. We construct a new benchmark called ReasonGraphQA, which provides explicit and fine-grained evidence graphs for complex question to support comprehensive and detailed reasoning. In order to further study how graph-based evidential reasoning can be performed, we explore what form of Graph-Hop works best for generating textual evidence explanations in knowledge reasoning and question answering. We have thoroughly evaluated existing evidence retrieval and reasoning models on the ReasonGraphQA. Experiments highlight Graph-Hop is a promising direction for answering complex questions, but it still has certain limitations. We have further studied mitigation strategies to meet these challenges and discuss future directions.