Hyein Seo
2025
FEAT: A Preference Feedback Dataset through a Cost-Effective Auto-Generation and Labeling Framework for English AI Tutoring
Hyein Seo
|
Taewook Hwang
|
Yohan Lee
|
Sangkeun Jung
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
In English education tutoring, teacher feedback is essential for guiding students. Recently, AI-based tutoring systems have emerged to assist teachers; however, these systems require high-quality and large-scale teacher feedback data, which is both time-consuming and costly to generate manually. In this study, we propose FEAT, a cost-effective framework for generating teacher feedback, and have constructed three complementary datasets: (1) DIRECT-Manual (DM), where both humans and large language models (LLMs) collaboratively generate high-quality teacher feedback, albeit at a higher cost; (2) DIRECT-Generated (DG), an LLM-only generated, cost-effective dataset with lower quality;, and (3) DIRECT-Augmented (DA), primarily based on DG with a small portion of DM added to enhance quality while maintaining cost-efficiency. Experimental results showed that incorporating a small portion of DM (5–10%) into DG leads to superior performance compared to using 100% DM alone.
2024
Guidance-Based Prompt Data Augmentation in Specialized Domains for Named Entity Recognition
Hyeonseok Kang
|
Hyein Seo
|
Jeesu Jung
|
Sangkeun Jung
|
Du-Seong Chang
|
Riwoo Chung
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
While the abundance of rich and vast datasets across numerous fields has facilitated the advancement of natural language processing, sectors in need of specialized data types continue to struggle with the challenge of finding quality data. Our study introduces a novel guidance data augmentation technique utilizing abstracted context and sentence structures to produce varied sentences while maintaining context-entity relationships, addressing data scarcity challenges. By fostering a closer relationship between context, sentence structure, and role of entities, our method enhances data augmentation’s effectiveness. Consequently, by showcasing diversification in both entity-related vocabulary and overall sentence structure, and simultaneously improving the training performance of named entity recognition task.
Search
Fix author
Co-authors
- Sangkeun Jung 2
- Du-Seong Chang 1
- Riwoo Chung 1
- Taewook Hwang 1
- Jeesu Jung 1
- show all...
Venues
- acl2