Hongyi Du


2025

pdf bib
EscapeBench: Towards Advancing Creative Intelligence of Language Model Agents
Cheng Qian | Peixuan Han | Qinyu Luo | Bingxiang He | Xiusi Chen | Yuji Zhang | Hongyi Du | Jiarui Yao | Xiaocheng Yang | Denghui Zhang | Yunzhu Li | Heng Ji
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language model agents excel in long-session planning and reasoning, but existing benchmarks primarily focus on goal-oriented tasks with explicit objectives, neglecting creative adaptation in unfamiliar environments. To address this, we introduce EscapeBench—a benchmark suite of room escape game environments designed to challenge agents with creative reasoning, unconventional tool use, and iterative problem-solving to uncover implicit goals. Our results show that current LM models, despite employing working memory and Chain-of-Thought reasoning, achieve only 15% average progress without hints, highlighting their limitations in creativity. To bridge this gap, we propose EscapeAgent, a framework designed to enhance creative reasoning through Foresight (innovative tool use) and Reflection (identifying unsolved tasks). Experiments show that EscapeAgent can execute action chains over 1,000 steps while maintaining logical coherence. It navigates and completes games with up to 40% fewer steps and hints, performs robustly across difficulty levels, and achieves higher action success rates with more efficient and innovative puzzle-solving strategies.

pdf bib
MultiAgentBench : Evaluating the Collaboration and Competition of LLM agents
Kunlun Zhu | Hongyi Du | Zhaochen Hong | Xiaocheng Yang | Shuyi Guo | Zhe Wang | Zhenhailong Wang | Cheng Qian | Robert Tang | Heng Ji | Jiaxuan You
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents; yet existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition. In this paper, we introduce MultiAgentBench, a comprehensive benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios. Our framework measures not only task completion but also the quality of collaboration and competition using novel, milestone-based key performance indicators. Moreover, we evaluate various coordination protocols (including star, chain, tree, and graph topologies) and innovative strategies such as group discussion and cognitive planning. Notably, cognitive planning improves milestone achievement rates by 3%. Code and dataset will be made publicly available. Code and datasets are publicavailable at https://github.com/ulab-uiuc/MARBLE