Hongkun Yu


2024

pdf
Conditional Language Policy: A General Framework For Steerable Multi-Objective Finetuning
Kaiwen Wang | Rahul Kidambi | Ryan Sullivan | Alekh Agarwal | Christoph Dann | Andrea Michi | Marco Gelmi | Yunxuan Li | Raghav Gupta | Kumar Avinava Dubey | Alexandre Rame | Johan Ferret | Geoffrey Cideron | Le Hou | Hongkun Yu | Amr Ahmed | Aranyak Mehta | Leonard Hussenot | Olivier Bachem | Edouard Leurent
Findings of the Association for Computational Linguistics: EMNLP 2024

Reward-based finetuning is crucial for aligning language policies with intended behaviors (*e.g.*, creativity and safety). A key challenge is to develop steerable language models that trade-off multiple (conflicting) objectives in a flexible and efficient manner. This paper presents Conditional Language Policy (CLP), a general framework for finetuning language models on multiple objectives. Building on techniques from multi-task training and parameter-efficient finetuning, CLP learn steerable models that effectively trade-off conflicting objectives at *inference time*. Notably, this does not require training or maintaining multiple models to achieve different trade-offs between the objectives. Through extensive experiments and ablations on two summarization datasets, we show that CLP learns steerable language models that outperform and Pareto-dominate the existing approaches for multi-objective

pdf
Multi-step Problem Solving Through a Verifier: An Empirical Analysis on Model-induced Process Supervision
Zihan Wang | Yunxuan Li | Yuexin Wu | Liangchen Luo | Le Hou | Hongkun Yu | Jingbo Shang
Findings of the Association for Computational Linguistics: EMNLP 2024

Process supervision, using a trained verifier to evaluate the intermediate steps generated by a reasoner, has demonstrated significant improvements in multi-step problem solving. In this paper, to avoid the expensive effort of human annotation on the verifier training data, we introduce Model-induced Process Supervision (MiPS), a novel method for automating data curation. MiPS annotates an intermediate step by sampling completions of this solution through the reasoning model, and obtaining an accuracy defined as the proportion of correct completions. Inaccuracies of the reasoner would cause MiPS underestimating the accuracy of intermediate steps, therefore, we suggest and empirically show that verification focusing on high predicted scores of the verifier shall be preferred over that of low predicted scores, contrary to prior observations on human curated data. Our approach significantly improves the performance of PaLM 2 on math and coding tasks (accuracy +0.67% on GSM8K, +4.16% on MATH, +0.92% on MBPP compared with an output supervision trained verifier). Additionally, our study demonstrates that the verifier exhibits strong generalization ability across different reasoning models.

2023

pdf
Large Language Models Can Self-Improve
Jiaxin Huang | Shixiang Gu | Le Hou | Yuexin Wu | Xuezhi Wang | Hongkun Yu | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have achieved excellent performances in various tasks. However, fine-tuning an LLM requires extensive supervision. Human, on the other hand, may improve their reasoning abilities by self-thinking without external inputs. In this work, we demonstrate that an LLM is also capable of self-improving with only unlabeled datasets. We use a pre-trained LLM to generate “high-confidence” rationale-augmented answers for unlabeled questions using Chain-of-Though (CoT) prompting and self-consistency, and fine-tune the LLM using those self-generated solutions as target outputs. We show that without any ground truth label, our approach improves the general reasoning ability of a 540B-parameter LLM (74.4%82.1% on GSM8K, 90.0%94.4% on OpenBookQA, and 63.4%67.9% on ANLI-A3) and can also be adapted to extreme low-resource cases where even training questions and CoT prompts are limited. We conduct ablation studies and show that fine-tuning on diverse reasoning paths is critical for self-improvement.

2021

pdf
On the Transformer Growth for Progressive BERT Training
Xiaotao Gu | Liyuan Liu | Hongkun Yu | Jing Li | Chen Chen | Jiawei Han
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

As the excessive pre-training cost arouses the need to improve efficiency, considerable efforts have been made to train BERT progressively–start from an inferior but low-cost model and gradually increase the computational complexity. Our objective is to help advance the understanding of such Transformer growth and discover principles that guide progressive training. First, we find that similar to network architecture selection, Transformer growth also favors compound scaling. Specifically, while existing methods only conduct network growth in a single dimension, we observe that it is beneficial to use compound growth operators and balance multiple dimensions (e.g., depth, width, and input length of the model). Moreover, we explore alternative growth operators in each dimension via controlled comparison to give practical guidance for operator selection. In light of our analyses, the proposed method CompoundGrow speeds up BERT pre-training by 73.6% and 82.2% for the base and large models respectively while achieving comparable performances.

2020

pdf
MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
Zhiqing Sun | Hongkun Yu | Xiaodan Song | Renjie Liu | Yiming Yang | Denny Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUE score of 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).