This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Multimodal machine translation is an attractive application of neural machine translation (NMT). It helps computers to deeply understand visual objects and their relations with natural languages. However, multimodal NMT systems suffer from a shortage of available training data, resulting in poor performance for translating rare words. In NMT, pretrained word embeddings have been shown to improve NMT of low-resource domains, and a search-based approach is proposed to address the rare word problem. In this study, we effectively combine these two approaches in the context of multimodal NMT and explore how we can take full advantage of pretrained word embeddings to better translate rare words. We report overall performance improvements of 1.24 METEOR and 2.49 BLEU and achieve an improvement of 7.67 F-score for rare word translation.
In this paper, we introduce our participation in the WMT 2019 Metric Shared Task. We propose an improved version of sentence BLEU using filtered pseudo-references. We propose a method to filter pseudo-references by paraphrasing for automatic evaluation of machine translation (MT). We use the outputs of off-the-shelf MT systems as pseudo-references filtered by paraphrasing in addition to a single human reference (gold reference). We use BERT fine-tuned with paraphrase corpus to filter pseudo-references by checking the paraphrasability with the gold reference. Our experimental results of the WMT 2016 and 2017 datasets show that our method achieved higher correlation with human evaluation than the sentence BLEU (SentBLEU) baselines with a single reference and with unfiltered pseudo-references.
Neural machine translation (NMT) has a drawback in that can generate only high-frequency words owing to the computational costs of the softmax function in the output layer. In Japanese-English NMT, Japanese predicate conjugation causes an increase in vocabulary size. For example, one verb can have as many as 19 surface varieties. In this research, we focus on predicate conjugation for compressing the vocabulary size in Japanese. The vocabulary list is filled with the various forms of verbs. We propose methods using predicate conjugation information without discarding linguistic information. The proposed methods can generate low-frequency words and deal with unknown words. Two methods were considered to introduce conjugation information: the first considers it as a token (conjugation token) and the second considers it as an embedded vector (conjugation feature). The results using these methods demonstrate that the vocabulary size can be compressed by approximately 86.1% (Tanaka corpus) and the NMT models can output the words not in the training data set. Furthermore, BLEU scores improved by 0.91 points in Japanese-to-English translation, and 0.32 points in English-to-Japanese translation with ASPEC.
Encoder-decoder models typically only employ words that are frequently used in the training corpus because of the computational costs and/or to exclude noisy words. However, this vocabulary set may still include words that interfere with learning in encoder-decoder models. This paper proposes a method for selecting more suitable words for learning encoders by utilizing not only frequency, but also co-occurrence information, which we capture using the HITS algorithm. The proposed method is applied to two tasks: machine translation and grammatical error correction. For Japanese-to-English translation, this method achieved a BLEU score that was 0.56 points more than that of a baseline. It also outperformed the baseline method for English grammatical error correction, with an F-measure that was 1.48 points higher.
This study reports an attempt to predict the voice of reference using the information from the input sentences or previous input/output sentences. Our previous study presented a voice controlling method to generate sentences for neural machine translation, wherein it was demonstrated that the BLEU score improved when the voice of generated sentence was controlled relative to that of the reference. However, it is impractical to use the reference information because we cannot discern the voice of the correct translation in advance. Thus, this study presents a voice prediction method for generated sentences for neural machine translation. While evaluating on Japanese-to-English translation, we obtain a 0.70-improvement in the BLEU using the predicted voice.
In machine translation, we must consider the difference in expression between languages. For example, the active/passive voice may change in Japanese-English translation. The same verb in Japanese may be translated into different voices at each translation because the voice of a generated sentence cannot be determined using only the information of the Japanese sentence. Machine translation systems should consider the information structure to improve the coherence of the output by using several topicalization techniques such as passivization. Therefore, this paper reports on our attempt to control the voice of the sentence generated by an encoder-decoder model. To control the voice of the generated sentence, we added the voice information of the target sentence to the source sentence during the training. We then generated sentences with a specified voice by appending the voice information to the source sentence. We observed experimentally whether the voice could be controlled. The results showed that, we could control the voice of the generated sentence with 85.0% accuracy on average. In the evaluation of Japanese-English translation, we obtained a 0.73-point improvement in BLEU score by using gold voice labels.