Harsh Jhamtani


2024

pdf
Learning to Retrieve Iteratively for In-Context Learning
Yunmo Chen | Tongfei Chen | Harsh Jhamtani | Patrick Xia | Richard Shin | Jason Eisner | Benjamin Van Durme
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We introduce iterative retrieval, a novel framework that empowers retrievers to make iterative decisions through policy optimization. Finding an optimal portfolio of retrieved items is a combinatorial optimization problem, generally considered NP-hard. This approach provides a learned approximation to such a solution, meeting specific task requirements under a given family of large language models (LLMs). We propose a training procedure based on reinforcement learning, incorporating feedback from LLMs. We instantiate an iterative retriever for composing in-context learning (ICL) exemplars and apply it to various semantic parsing tasks that demand synthesized programs as outputs. By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever, outperforming previous methods in selecting ICL exemplars on semantic parsing datasets such as CalFlow, TreeDST, and MTOP. Additionally, the trained iterative retriever generalizes across different inference LLMs beyond the one used during training.

pdf
Language-to-Code Translation with a Single Labeled Example
Kaj Bostrom | Harsh Jhamtani | Hao Fang | Sam Thomson | Richard Shin | Patrick Xia | Benjamin Van Durme | Jason Eisner | Jacob Andreas
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Tools for translating natural language into code promise natural, open-ended interaction with databases, web APIs, and other software systems. However, this promise is complicated by the diversity and continual development of these systems, each with its own interface and distinct set of features. Building a new language-to-code translator, even starting with a large language model (LM), typically requires annotating a large set of natural language commands with their associated programs. In this paper, we describe ICIP (In-Context Inverse Programming), a method for bootstrapping a language-to-code system using mostly (or entirely) unlabeled programs written using a potentially unfamiliar (but human-readable) library or API. ICIP uses a pre-trained LM to assign candidate natural language descriptions to these programs, then iteratively refines the descriptions to ensure global consistency. Across nine different application domains from the Overnight and Spider benchmarks and text-davinci-003 and CodeLlama-7b-Instruct models, ICIP outperforms a number of prompting baselines. Indeed, in a “nearly unsupervised” setting with only a single annotated program and 100 unlabeled examples, it achieves up to 85% of the performance of a fully supervised system.

pdf
Ontologically Faithful Generation of Non-Player Character Dialogues
Nathaniel Weir | Ryan Thomas | Randolph d’Amore | Kellie Hill | Benjamin Van Durme | Harsh Jhamtani
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We introduce a language generation dataset grounded in a popular video game. KNUDGE (**KN**owledge Constrained **U**ser-NPC **D**ialogue **GE**neration) requires models to produce trees of dialogue between video game characters that accurately reflect quest and entity specifications stated in natural language. KNUDGE is constructed from side quest dialogues drawn directly from game data of Obsidian Entertainment’s _The Outer Worlds_, leading to real-world complexities in generation: (1) utterances must remain faithful to the game lore, including character personas and backstories; (2) a dialogue must accurately reveal new quest details to the human player; and (3) dialogues are large trees as opposed to linear chains of utterances. We report results for a set of neural generation models using supervised and in-context learning techniques; we find competent performance but room for future work addressing the challenges of creating realistic, game-quality dialogues.

pdf
Interpreting User Requests in the Context of Natural Language Standing Instructions
Nikita Moghe | Patrick Xia | Jacob Andreas | Jason Eisner | Benjamin Van Durme | Harsh Jhamtani
Findings of the Association for Computational Linguistics: NAACL 2024

Users of natural language interfaces, frequently powered by Large Language Models (LLMs), must often repeat their full set of preferences each time they make a similar request. We describe an approach to LLM-based dialogue modeling in which persistent user constraints and preferences – collectively termed standing instructions – are provided as additional context for such interfaces. For example, when a user states “I’m hungry”, a previously expressed preference for Persian food can be automatically added to the LLM prompt, influencing the search for relevant restaurants.We develop NLSI, a language-to-program dataset consisting of over 2.4K English dialogues spanning 17 domains, in which each dialogue is paired with a user profile (a set of user-specific standing instructions) and corresponding structured representations (a sequence of API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 46% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls

pdf
Towards Robust Evaluation of Unlearning in LLMs via Data Transformations
Abhinav Joshi | Shaswati Saha | Divyaksh Shukla | Sriram Vema | Harsh Jhamtani | Manas Gaur | Ashutosh Modi
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) have shown to be a great success in a wide range of applications ranging from regular NLP-based use cases to AI agents. LLMs have been trained on a vast corpus of texts from various sources; despite the best efforts during the data pre-processing stage while training the LLMs, they may pick some undesirable information such as personally identifiable information (PII). Consequently, in recent times research in the area of Machine Unlearning (MUL) has become active, the main idea is to force LLMs to forget (unlearn) certain information (e.g., PII) without suffering from performance loss on regular tasks. In this work, we examine the robustness of the existing MUL techniques for their ability to enable leakage-proof forgetting in LLMs. In particular, we examine the effect of data transformation on forgetting, i.e., is an unlearned LLM able to recall forgotten information if there is a change in the format of the input? Our findings on the TOFU dataset highlight the necessity of using diverse data formats to quantify unlearning in LLMs more reliably.

2023

pdf
The Whole Truth and Nothing But the Truth: Faithful and Controllable Dialogue Response Generation with Dataflow Transduction and Constrained Decoding
Hao Fang | Anusha Balakrishnan | Harsh Jhamtani | John Bufe | Jean Crawford | Jayant Krishnamurthy | Adam Pauls | Jason Eisner | Jacob Andreas | Dan Klein
Findings of the Association for Computational Linguistics: ACL 2023

In a real-world dialogue system, generated text must be truthful and informative while remaining fluent and adhering to a prescribed style. Satisfying these constraints simultaneously isdifficult for the two predominant paradigms in language generation: neural language modeling and rule-based generation. We describe a hybrid architecture for dialogue response generation that combines the strengths of both paradigms. The first component of this architecture is a rule-based content selection model defined using a new formal framework called dataflow transduction, which uses declarative rules to transduce a dialogue agent’s actions and their results (represented as dataflow graphs) into context-free grammars representing the space of contextually acceptable responses. The second component is a constrained decoding procedure that uses these grammars to constrain the output of a neural language model, which selects fluent utterances. Our experiments show that this system outperforms both rule-based and learned approaches in human evaluations of fluency, relevance, and truthfulness.

2022

pdf
Achieving Conversational Goals with Unsupervised Post-hoc Knowledge Injection
Bodhisattwa Prasad Majumder | Harsh Jhamtani | Taylor Berg-Kirkpatrick | Julian McAuley
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A limitation of current neural dialog models is that they tend to suffer from a lack of specificity and informativeness in generated responses, primarily due to dependence on training data that covers a limited variety of scenarios and conveys limited knowledge. One way to alleviate this issue is to extract relevant knowledge from external sources at decoding time and incorporate it into the dialog response. In this paper, we propose a post-hoc knowledge-injection technique where we first retrieve a diverse set of relevant knowledge snippets conditioned on both the dialog history and an initial response from an existing dialog model. We construct multiple candidate responses, individually injecting each retrieved snippet into the initial response using a gradient-based decoding method, and then select the final response with an unsupervised ranking step. Our experiments in goal-oriented and knowledge-grounded dialog settings demonstrate that human annotators judge the outputs from the proposed method to be more engaging and informative compared to responses from prior dialog systems. We further show that knowledge-augmentation promotes success in achieving conversational goals in both experimental settings.

pdf
Target-Guided Dialogue Response Generation Using Commonsense and Data Augmentation
Prakhar Gupta | Harsh Jhamtani | Jeffrey Bigham
Findings of the Association for Computational Linguistics: NAACL 2022

Target-guided response generation enables dialogue systems to smoothly transition a conversation from a dialogue context toward a target sentence. Such control is useful for designing dialogue systems that direct a conversation toward specific goals, such as creating non-obtrusive recommendations or introducing new topics in the conversation. In this paper, we introduce a new technique for target-guided response generation, which first finds a bridging path of commonsense knowledge concepts between the source and the target, and then uses the identified bridging path to generate transition responses. Additionally, we propose techniques to re-purpose existing dialogue datasets for target-guided generation. Experiments reveal that the proposed techniques outperform various baselines on this task. Finally, we observe that the existing automated metrics for this task correlate poorly with human judgement ratings. We propose a novel evaluation metric that we demonstrate is more reliable for target-guided response evaluation. Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.

pdf
PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification Data for Learning Enhanced Generation
Sedrick Scott Keh | Kevin Lu | Varun Gangal | Steven Y. Feng | Harsh Jhamtani | Malihe Alikhani | Eduard Hovy
Proceedings of the 29th International Conference on Computational Linguistics

A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation. We curate a corpus of personifications called PersonifCorp, together with automatically generated de-personified literalizations of these personifications. We demonstrate the usefulness of this parallel corpus by training a seq2seq model to personify a given literal input. Both automatic and human evaluations show that fine-tuning with PersonifCorp leads to significant gains in personification-related qualities such as animacy and interestingness. A detailed qualitative analysis also highlights key strengths and imperfections of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative personifications that enhance the overall appeal of a sentence.

2021

pdf
Unsupervised Enrichment of Persona-grounded Dialog with Background Stories
Bodhisattwa Prasad Majumder | Taylor Berg-Kirkpatrick | Julian McAuley | Harsh Jhamtani
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Humans often refer to personal narratives, life experiences, and events to make a conversation more engaging and rich. While persona-grounded dialog models are able to generate responses that follow a given persona, they often miss out on stating detailed experiences or events related to a persona, often leaving conversations shallow and dull. In this work, we equip dialog models with ‘background stories’ related to a persona by leveraging fictional narratives from existing story datasets (e.g. ROCStories). Since current dialog datasets do not contain such narratives as responses, we perform an unsupervised adaptation of a retrieved story for generating a dialog response using a gradient-based rewriting technique. Our proposed method encourages the generated response to be fluent (i.e., highly likely) with the dialog history, minimally different from the retrieved story to preserve event ordering and consistent with the original persona. We demonstrate that our method can generate responses that are more diverse, and are rated more engaging and human-like by human evaluators, compared to outputs from existing dialog models.

pdf
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann | Tosin Adewumi | Karmanya Aggarwal | Pawan Sasanka Ammanamanchi | Anuoluwapo Aremu | Antoine Bosselut | Khyathi Raghavi Chandu | Miruna-Adriana Clinciu | Dipanjan Das | Kaustubh Dhole | Wanyu Du | Esin Durmus | Ondřej Dušek | Chris Chinenye Emezue | Varun Gangal | Cristina Garbacea | Tatsunori Hashimoto | Yufang Hou | Yacine Jernite | Harsh Jhamtani | Yangfeng Ji | Shailza Jolly | Mihir Kale | Dhruv Kumar | Faisal Ladhak | Aman Madaan | Mounica Maddela | Khyati Mahajan | Saad Mahamood | Bodhisattwa Prasad Majumder | Pedro Henrique Martins | Angelina McMillan-Major | Simon Mille | Emiel van Miltenburg | Moin Nadeem | Shashi Narayan | Vitaly Nikolaev | Andre Niyongabo Rubungo | Salomey Osei | Ankur Parikh | Laura Perez-Beltrachini | Niranjan Ramesh Rao | Vikas Raunak | Juan Diego Rodriguez | Sashank Santhanam | João Sedoc | Thibault Sellam | Samira Shaikh | Anastasia Shimorina | Marco Antonio Sobrevilla Cabezudo | Hendrik Strobelt | Nishant Subramani | Wei Xu | Diyi Yang | Akhila Yerukola | Jiawei Zhou
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

pdf
Formulating Neural Sentence Ordering as the Asymmetric Traveling Salesman Problem
Vishal Keswani | Harsh Jhamtani
Proceedings of the 14th International Conference on Natural Language Generation

The task of Sentence Ordering refers to rearranging a set of given sentences in a coherent ordering. Prior work (Prabhumoye et al., 2020) models this as an optimal graph traversal (with sentences as nodes, and edges as local constraints) using topological sorting. However, such an approach has major limitations – it cannot handle the presence of cycles in the resulting graphs and considers only the binary presence/absence of edges rather than a more granular score. In this work, we propose an alternate formulation of this task as a classic combinatorial optimization problem popular as the Traveling Salesman Problem (or TSP in short). Compared to the previous approach of using topological sorting, our proposed technique gracefully handles the presence of cycles and is more expressive since it takes into account real-valued constraint/edge scores rather than just the presence/absence of edges. Our experiments demonstrate improved handling of such cyclic cases in resulting graphs. Additionally, we highlight how model accuracy can be sensitive to the ordering of input sentences when using such graphs-based formulations. Finally, we note that our approach requires only lightweight fine-tuning of a classification layer built on pretrained BERT sentence encoder to identify local relationships.

pdf
Improving Automated Evaluation of Open Domain Dialog via Diverse Reference Augmentation
Varun Gangal | Harsh Jhamtani | Eduard Hovy | Taylor Berg-Kirkpatrick
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Truth-Conditional Captions for Time Series Data
Harsh Jhamtani | Taylor Berg-Kirkpatrick
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In this paper, we explore the task of automatically generating natural language descriptions of salient patterns in a time series, such as stock prices of a company over a week. A model for this task should be able to extract high-level patterns such as presence of a peak or a dip. While typical contemporary neural models with attention mechanisms can generate fluent output descriptions for this task, they often generate factually incorrect descriptions. We propose a computational model with a truth-conditional architecture which first runs small learned programs on the input time series, then identifies the programs/patterns which hold true for the given input, and finally conditions on *only* the chosen valid program (rather than the input time series) to generate the output text description. A program in our model is constructed from modules, which are small neural networks that are designed to capture numerical patterns and temporal information. The modules are shared across multiple programs, enabling compositionality as well as efficient learning of module parameters. The modules, as well as the composition of the modules, are unobserved in data, and we learn them in an end-to-end fashion with the only training signal coming from the accompanying natural language text descriptions. We find that the proposed model is able to generate high-precision captions even though we consider a small and simple space of module types.

pdf
Investigating Robustness of Dialog Models to Popular Figurative Language Constructs
Harsh Jhamtani | Varun Gangal | Eduard Hovy | Taylor Berg-Kirkpatrick
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Humans often employ figurative language use in communication, including during interactions with dialog systems. Thus, it is important for real-world dialog systems to be able to handle popular figurative language constructs like metaphor and simile. In this work, we analyze the performance of existing dialog models in situations where the input dialog context exhibits use of figurative language. We observe large gaps in handling of figurative language when evaluating the models on two open domain dialog datasets. When faced with dialog contexts consisting of figurative language, some models show very large drops in performance compared to contexts without figurative language. We encourage future research in dialog modeling to separately analyze and report results on figurative language in order to better test model capabilities relevant to real-world use. Finally, we propose lightweight solutions to help existing models become more robust to figurative language by simply using an external resource to translate figurative language to literal (non-figurative) forms while preserving the meaning to the best extent possible.

2020

pdf
Narrative Text Generation with a Latent Discrete Plan
Harsh Jhamtani | Taylor Berg-Kirkpatrick
Findings of the Association for Computational Linguistics: EMNLP 2020

Past work on story generation has demonstrated the usefulness of conditioning on a generation plan to generate coherent stories. However, these approaches have used heuristics or off-the-shelf models to first tag training stories with the desired type of plan, and then train generation models in a supervised fashion. In this paper, we propose a deep latent variable model that first samples a sequence of anchor words, one per sentence in the story, as part of its generative process. During training, our model treats the sequence of anchor words as a latent variable and attempts to induce anchoring sequences that help guide generation in an unsupervised fashion. We conduct experiments with several types of sentence decoder distributions – left-to-right and non-monotonic, with different degrees of restriction. Further, since we use amortized variational inference to train our model, we introduce two corresponding types of inference network for predicting the posterior on anchor words. We conduct human evaluations which demonstrate that the stories produced by our model are rated better in comparison with baselines which do not consider story plans, and are similar or better in quality relative to baselines which use external supervision for plans. Additionally, the proposed model gets favorable scores when evaluated on perplexity, diversity, and control of story via discrete plan

pdf
Learning to Explain: Datasets and Models for Identifying Valid Reasoning Chains in Multihop Question-Answering
Harsh Jhamtani | Peter Clark
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite the rapid progress in multihop question-answering (QA), models still have trouble explaining why an answer is correct, with limited explanation training data available to learn from. To address this, we introduce three explanation datasets in which explanations formed from corpus facts are annotated. Our first dataset, eQASC contains over 98K explanation annotations for the multihop question answering dataset QASC, and is the first that annotates multiple candidate explanations for each answer. The second dataset eQASC-perturbed is constructed by crowd-sourcing perturbations (while preserving their validity) of a subset of explanations in QASC, to test consistency and generalization of explanation prediction models. The third dataset eOBQA is constructed by adding explanation annotations to the OBQA dataset to test generalization of models trained on eQASC. We show that this data can be used to significantly improve explanation quality (+14% absolute F1 over a strong retrieval baseline) using a BERT-based classifier, but still behind the upper bound, offering a new challenge for future research. We also explore a delexicalized chain representation in which repeated noun phrases are replaced by variables, thus turning them into generalized reasoning chains (for example: “X is a Y” AND “Y has Z” IMPLIES “X has Z”). We find that generalized chains maintain performance while also being more robust to certain perturbations.

pdf
Like hiking? You probably enjoy nature: Persona-grounded Dialog with Commonsense Expansions
Bodhisattwa Prasad Majumder | Harsh Jhamtani | Taylor Berg-Kirkpatrick | Julian McAuley
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing persona-grounded dialog models often fail to capture simple implications of given persona descriptions, something which humans are able to do seamlessly. For example, state-of-the-art models cannot infer that interest in hiking might imply love for nature or longing for a break. In this paper, we propose to expand available persona sentences using existing commonsense knowledge bases and paraphrasing resources to imbue dialog models with access to an expanded and richer set of persona descriptions. Additionally, we introduce fine-grained grounding on personas by encouraging the model to make a discrete choice among persona sentences while synthesizing a dialog response. Since such a choice is not observed in the data, we model it using a discrete latent random variable and use variational learning to sample from hundreds of persona expansions. Our model outperforms competitive baselines on the Persona-Chat dataset in terms of dialog quality and diversity while achieving persona-consistent and controllable dialog generation.

2019

pdf
Learning Rhyming Constraints using Structured Adversaries
Harsh Jhamtani | Sanket Vaibhav Mehta | Jaime Carbonell | Taylor Berg-Kirkpatrick
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Existing recurrent neural language models often fail to capture higher-level structure present in text: for example, rhyming patterns present in poetry. Much prior work on poetry generation uses manually defined constraints which are satisfied during decoding using either specialized decoding procedures or rejection sampling. The rhyming constraints themselves are typically not learned by the generator. We propose an alternate approach that uses a structured discriminator to learn a poetry generator that directly captures rhyming constraints in a generative adversarial setup. By causing the discriminator to compare poems based only on a learned similarity matrix of pairs of line ending words, the proposed approach is able to successfully learn rhyming patterns in two different English poetry datasets (Sonnet and Limerick) without explicitly being provided with any phonetic information

pdf
A Sociolinguistic Study of Online Echo Chambers on Twitter
Nikita Duseja | Harsh Jhamtani
Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science

Online social media platforms such as Facebook and Twitter are increasingly facing criticism for polarization of users. One particular aspect which has caught the attention of various critics is presence of users in echo chambers - a situation wherein users are exposed mostly to the opinions which are in sync with their own views. In this paper, we perform a sociolinguistic study by comparing the tweets of users in echo chambers with the tweets of users not in echo chambers with similar levels of polarity on a broad topic. Specifically, we carry out a comparative analysis of tweet structure, lexical choices, and focus issues, and provide possible explanations for the results.

2018

pdf
Learning to Generate Move-by-Move Commentary for Chess Games from Large-Scale Social Forum Data
Harsh Jhamtani | Varun Gangal | Eduard Hovy | Graham Neubig | Taylor Berg-Kirkpatrick
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper examines the problem of generating natural language descriptions of chess games. We introduce a new large-scale chess commentary dataset and propose methods to generate commentary for individual moves in a chess game. The introduced dataset consists of more than 298K chess move-commentary pairs across 11K chess games. We highlight how this task poses unique research challenges in natural language generation: the data contain a large variety of styles of commentary and frequently depend on pragmatic context. We benchmark various baselines and propose an end-to-end trainable neural model which takes into account multiple pragmatic aspects of the game state that may be commented upon to describe a given chess move. Through a human study on predictions for a subset of the data which deals with direct move descriptions, we observe that outputs from our models are rated similar to ground truth commentary texts in terms of correctness and fluency.

pdf
Learning to Describe Differences Between Pairs of Similar Images
Harsh Jhamtani | Taylor Berg-Kirkpatrick
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this paper, we introduce the task of automatically generating text to describe the differences between two similar images. We collect a new dataset by crowd-sourcing difference descriptions for pairs of image frames extracted from video-surveillance footage. Annotators were asked to succinctly describe all the differences in a short paragraph. As a result, our novel dataset provides an opportunity to explore models that align language and vision, and capture visual salience. The dataset may also be a useful benchmark for coherent multi-sentence generation. We perform a first-pass visual analysis that exposes clusters of differing pixels as a proxy for object-level differences. We propose a model that captures visual salience by using a latent variable to align clusters of differing pixels with output sentences. We find that, for both single-sentence generation and as well as multi-sentence generation, the proposed model outperforms the models that use attention alone.

2017

pdf
Charmanteau: Character Embedding Models For Portmanteau Creation
Varun Gangal | Harsh Jhamtani | Graham Neubig | Eduard Hovy | Eric Nyberg
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Portmanteaus are a word formation phenomenon where two words combine into a new word. We propose character-level neural sequence-to-sequence (S2S) methods for the task of portmanteau generation that are end-to-end-trainable, language independent, and do not explicitly use additional phonetic information. We propose a noisy-channel-style model, which allows for the incorporation of unsupervised word lists, improving performance over a standard source-to-target model. This model is made possible by an exhaustive candidate generation strategy specifically enabled by the features of the portmanteau task. Experiments find our approach superior to a state-of-the-art FST-based baseline with respect to ground truth accuracy and human evaluation.

pdf bib
Shakespearizing Modern Language Using Copy-Enriched Sequence to Sequence Models
Harsh Jhamtani | Varun Gangal | Eduard Hovy | Eric Nyberg
Proceedings of the Workshop on Stylistic Variation

Variations in writing styles are commonly used to adapt the content to a specific context, audience, or purpose. However, applying stylistic variations is still by and large a manual process, and there have been little efforts towards automating it. In this paper we explore automated methods to transform text from modern English to Shakespearean English using an end to end trainable neural model with pointers to enable copy action. To tackle limited amount of parallel data, we pre-train embeddings of words by leveraging external dictionaries mapping Shakespearean words to modern English words as well as additional text. Our methods are able to get a BLEU score of 31+, an improvement of ≈ 6 points above the strongest baseline. We publicly release our code to foster further research in this area.

2014

pdf
Word-level Language Identification in Bi-lingual Code-switched Texts
Harsh Jhamtani | Suleep Kumar Bhogi | Vaskar Raychoudhury
Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing

Search
Co-authors