Haoran Luo


2025

pdf bib
Language Constrained Multimodal Hyper Adapter For Many-to-Many Multimodal Summarization
Nayu Liu | Fanglong Yao | Haoran Luo | Yong Yang | Chen Tang | Bo Lv
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal summarization (MS) combines text and visuals to generate summaries. Recently, many-to-many multimodal summarization (M3S) garnered interest as it enables a unified model for multilingual and cross-lingual MS. Existing methods have made progress by facilitating the transfer of common multimodal summarization knowledge. While, prior M3S models that fully share parameters neglect the language-specific knowledge learning, where potential interference between languages may limit the flexible adaptation of MS modes across different language combinations and hinder further collaborative improvements in joint M3S training. Based on this observation, we propose Language Constrained Multimodal Hyper Adapter (LCMHA) for M3S. LCMHA integrates language-specific multimodal adapters into multilingual pre-trained backbones via a language constrained hypernetwork, enabling relaxed parameter sharing that enhances language-specific learning while preserving shared MS knowledge learning. In addition, a language-regularized hypernetwork is designed to balance intra- and inter-language learning, generating language-specific adaptation weights and enhancing the retention of distinct language features through the regularization of generated parameters. Experimental results on the M3Sum benchmark show LCMHA’s effectiveness and scalability across multiple multilingual pre-trained backbones.

pdf bib
A Cognitive Writing Perspective for Constrained Long-Form Text Generation
Kaiyang Wan | Honglin Mu | Rui Hao | Haoran Luo | Tianle Gu | Xiuying Chen
Findings of the Association for Computational Linguistics: ACL 2025

Like humans, Large Language Models (LLMs) struggle to generate high-quality long-form text that adheres to strict requirements in a single pass. This challenge is unsurprising, as successful human writing, according to the Cognitive Writing Theory, is a complex cognitive process involving iterative planning, translating, reviewing, and monitoring. Motivated by these cognitive principles, we aim to equip LLMs with human-like cognitive writing capabilities through CogWriter, a novel training-free framework that transforms LLM constrained long-form text generation into a systematic cognitive writing paradigm. Our framework consists of two key modules: (1) a Planning Agent that performs hierarchical planning to decompose the task, and (2) multiple Generation Agents that execute these plans in parallel. The system maintains quality via continuous monitoring and reviewing mechanisms, which evaluate outputs against specified requirements and trigger necessary revisions. CogWriter demonstrates exceptional performance on LongGenBench, a benchmark for complex constrained long-form text generation. Even when using Qwen-2.5-14B as its backbone, CogWriter surpasses GPT-4o by 22% in complex instruction completion accuracy while reliably generating texts exceeding 10,000 words. We hope this cognitive science-inspired approach provides a paradigm for LLM writing advancements: https://anonymous.4open.science/r/CogWriter-8DFE.

2024

pdf bib
ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models
Haoran Luo | Haihong E | Zichen Tang | Shiyao Peng | Yikai Guo | Wentai Zhang | Chenghao Ma | Guanting Dong | Meina Song | Wei Lin | Yifan Zhu | Anh Tuan Luu
Findings of the Association for Computational Linguistics: ACL 2024

Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more directly. Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets, WebQSP, and CWQ. This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs (KGs) for interpretable and knowledge-required question answering.

2023

pdf bib
HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in Global and Local Level
Haoran Luo | Haihong E | Yuhao Yang | Yikai Guo | Mingzhi Sun | Tianyu Yao | Zichen Tang | Kaiyang Wan | Meina Song | Wei Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Link Prediction on Hyper-relational Knowledge Graphs (HKG) is a worthwhile endeavor. HKG consists of hyper-relational facts (H-Facts), composed of a main triple and several auxiliary attribute-value qualifiers, which can effectively represent factually comprehensive information. The internal structure of HKG can be represented as a hypergraph-based representation globally and a semantic sequence-based representation locally. However, existing research seldom simultaneously models the graphical and sequential structure of HKGs, limiting HKGs’ representation. To overcome this limitation, we propose a novel Hierarchical Attention model for HKG Embedding (HAHE), including global-level and local-level attention. The global-level attention can model the graphical structure of HKG using hypergraph dual-attention layers, while the local-level attention can learn the sequential structure inside H-Facts via heterogeneous self-attention layers. Experiment results indicate that HAHE achieves state-of-the-art performance in link prediction tasks on HKG standard datasets. In addition, HAHE addresses the issue of HKG multi-position prediction for the first time, increasing the applicability of the HKG link prediction task. Our code is publicly available.

pdf bib
TR-Rules: Rule-based Model for Link Forecasting on Temporal Knowledge Graph Considering Temporal Redundancy
Ningyuan Li | Haihong E | Shi Li | Mingzhi Sun | Tianyu Yao | Meina Song | Yong Wang | Haoran Luo
Findings of the Association for Computational Linguistics: EMNLP 2023

Temporal knowledge graph (TKG) has been proved to be an effective way for modeling dynamic facts in real world. Many efforts have been devoted into predicting future events i.e. extrapolation, on TKGs. Recently, rule-based knowledge graph completion methods which are considered to be more interpretable than embedding-based methods, have been transferred to temporal knowledge graph extrapolation. However, rule-based models suffer from temporal redundancy when leveraged under dynamic settings, which results in inaccurate rule confidence calculation. In this paper, we define the problem of temporal redundancy and propose TR-Rules which solves the temporal redundancy issues through a simple but effective strategy. Besides, to capture more information lurking in TKGs, apart from cyclic rules, TR-Rules also mines and properly leverages acyclic rules, which has not been explored by existing models. Experimental results on three benchmarks show that TR-Rules achieves state-of-the-art performance. Ablation study shows the impact of temporal redundancy and demonstrates the performance of acyclic rules is much more promising due to its higher sensitivity to the number of sampled walks during learning stage.