Haoqi Zheng


2025

pdf bib
Logical DA: Enhancing Data Augmentation for Logical Reasoning via a Multi-Agent System
Haoqi Zheng | DongWang DongWang | Silin Yang | Yunpeng Qi | Ruochun Jin | Liyang Xu
Findings of the Association for Computational Linguistics: ACL 2025

Recent advancements in large language models (LLMs) have highlighted the importance of improving their reasoning capabilities. A critical challenge lies in the scarcity of high-quality reasoning data—characterized by diversity and rich supervisory signals—necessary for robust model training. While data augmentation (DA) methods have been leveraged to mitigate this scarcity, prevailing approaches often introduce noise and exhibit logical inconsistencies, thereby diminishing their utility for complex reasoning tasks. Moreover, existing DA paradigms predominantly isolate data synthesis from label validation, failing to unify these complementary processes within a cohesive architecture.To address these limitations, we introduce Logical DA, a multi-agent framework for enhancing reasoning-focused data augmentation in few-shot learning scenarios. Our system includes four agents operating through two synergistic phases: (1) diverse data generation, and (2) label verification.The system incorporates a reflection mechanism to continuously improve data quality by leveraging feedback from logical validation. We demonstrate the effectiveness of Logical DA through experiments on various tasks and datasets, achieving the highest average improvement in task accuracy in both fine-tuning and in-context learning paradigms, with an average improvement of 7.61% when applied to fine-tuning.

2024

pdf bib
POMP: Probability-driven Meta-graph Prompter for LLMs in Low-resource Unsupervised Neural Machine Translation
Shilong Pan | Zhiliang Tian | Liang Ding | Haoqi Zheng | Zhen Huang | Zhihua Wen | Dongsheng Li
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Low-resource languages (LRLs) face challenges in supervised neural machine translation (NMT) due to limited parallel data, prompting research in unsupervised NMT.Unsupervised NMT (UNMT), without requiring ground truth, provides solutions for LRL translations using synthetic pseudo-parallel data and parallel data from auxiliary language pairs. However, they usually encounter translation errors, including errors from synthetic data and from auxiliary language pairs with linguistic biases.We argue that large language models (LLMs) mitigate UNMT’s translation errors by dynamically organizing auxiliary languages in prompts to improve LRL translations. In this paper, we propose PrObability-driven Meta-graph Prompter (POMP), an approach employing a dynamic graph to organize multiple auxiliary languages, to prompt LLMs in LRL translations. POMP proposes a language-specific meta-graph that dynamically samples multiple translation paths to organize auxiliary languages in constructing prompts. Following the path, POMP prompts LLMs to translate with a mixture of auxiliary languages. We achieve the meta-graph’s evolution by back-propagating evaluation scores to update probabilities on the graph.Our experimental improvements show POMP’s effectiveness on LRLs’ translation.

2023

pdf bib
Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot Text Classification Tasks
Haoqi Zheng | Qihuang Zhong | Liang Ding | Zhiliang Tian | Xin Niu | Changjian Wang | Dongsheng Li | Dacheng Tao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Text classification tasks often encounter few-shot scenarios with limited labeled data, and addressing data scarcity is crucial. Data augmentation with mixup merges sample pairs to generate new pseudos, which can relieve the data deficiency issue in text classification. However, the quality of pseudo-samples generated by mixup exhibits significant variations. Most of the mixup methods fail to consider the varying degree of learning difficulty in different stages of training. And mixup generates new samples with one-hot labels, which encourages the model to produce a high prediction score for the correct class that is much larger than other classes, resulting in the model’s over-confidence. In this paper, we propose a self-evolution learning (SE) based mixup approach for data augmentation in text classification, which can generate more adaptive and model-friendly pseudo samples for the model training. SE caters to the growth of the model learning ability and adapts to the ability when generating training samples. To alleviate the model over-confidence, we introduce an instance-specific label smoothing regularization approach, which linearly interpolates the model’s output and one-hot labels of the original samples to generate new soft labels for label mixing up. Through experimental analysis, experiments show that our SE brings consistent and significant improvements upon different mixup methods. In-depth analyses demonstrate that SE enhances the model’s generalization ability.