Hao Zou
2024
You Make me Feel like a Natural Question: Training QA Systems on Transformed Trivia Questions
Tasnim Kabir
|
Yoo Yeon Sung
|
Saptarashmi Bandyopadhyay
|
Hao Zou
|
Abhranil Chandra
|
Jordan Lee Boyd-Graber
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Training question-answering QA and information retrieval systems for web queries require large, expensive datasets that are difficult to annotate and time-consuming to gather. Moreover, while natural datasets of information-seeking questions are often prone to ambiguity or ill-formed, there are troves of freely available, carefully crafted question datasets for many languages. Thus, we automatically generate shorter, information-seeking questions, resembling web queries in the style of the Natural Questions (NQ) dataset from longer trivia data. Training a QA system on these transformed questions is a viable strategy for alternating to more expensive training setups showing the F1 score difference of less than six points and contrasting the final systems.
Search