Hanwen Du
2025
Planning with Diffusion Models for Target-Oriented Dialogue Systems
Hanwen Du
|
Bo Peng
|
Xia Ning
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Target-Oriented Dialogue (TOD) remains a significant challenge in the LLM era, where strategic dialogue planning is crucial for directing conversations toward specific targets. However, existing dialogue planning methods generate dialogue plans in a step-by-step sequential manner, and may suffer from compounding errors and myopic actions. To address these limitations, we introduce a novel dialogue planning framework, DiffTOD, which leverages diffusion models to enable non-sequential dialogue planning. DiffTOD formulates dialogue planning as a trajectory generation problem with conditional guidance, and leverages a diffusion language model to estimate the likelihood of the dialogue trajectory. To optimize the dialogue action strategies, DiffTOD introduces three tailored guidance mechanisms for different target types, offering flexible guidance toward diverse TOD targets at test time. Extensive experiments across three diverse TOD settings show that DiffTOD can effectively perform non-myopic lookahead exploration and optimize action strategies over a long horizon through non-sequential dialogue planning, and demonstrates strong flexibility across complex and diverse dialogue scenarios. Our code and data are accessible through https://github.com/ninglab/DiffTOD.
SAPIENT: Mastering Multi-turn Conversational Recommendation with Strategic Planning and Monte Carlo Tree Search
Hanwen Du
|
Bo Peng
|
Xia Ning
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Conversational Recommender Systems (CRS) proactively engage users in interactive dialogues to elicit user preferences and provide personalized recommendations. Existing methods train Reinforcement Learning (RL)-based agent with greedy action selection or sampling strategy, and may suffer from suboptimal conversational planning. To address this, we present a novel Monte Carlo Tree Search (MCTS)-based CRS framework SAPIENT. SAPIENT consists of a conversational agent (S-agent) and a conversational planner (S-planner). S-planner builds a conversational search tree with MCTS based on the initial actions proposed by S-agent to find conversation plans. The best conversation plans from S-planner are used to guide the training of S-agent, creating a self-training loop where S-agent can iteratively improve its capability for conversational planning. Furthermore, we propose an efficient variant SAPIENT for trade-off between training efficiency and performance. Extensive experiments on four benchmark datasets validate the effectiveness of our approach, showing that SAPIENT outperforms the state-of-the-art baselines. Our code and data are accessible through https://github.com/ninglab/SAPIENT.