Haian Huang


2025

pdf bib
OmniAlign-V: Towards Enhanced Alignment of MLLMs with Human Preference
Xiangyu Zhao | Shengyuan Ding | Zicheng Zhang | Haian Huang | Maosongcao Maosongcao | Jiaqi Wang | Weiyun Wang | Xinyu Fang | Wenhai Wang | Guangtao Zhai | Hua Yang | Haodong Duan | Kai Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in open-source multi-modal large language models (MLLMs) have primarily focused on enhancing foundational capabilities, leaving a significant gap in human preference alignment. This paper introduces OmniAlign-V, a comprehensive dataset of 200K high-quality training samples featuring diverse images, complex questions, and varied response formats to improve MLLMs’ alignment with human preferences. We also present MM-AlignBench, a human-annotated benchmark specifically designed to evaluate MLLMs’ alignment with human values. Experimental results show that finetuning MLLMs with OmniAlign-V, using Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO), significantly enhances human preference alignment while maintaining or enhancing performance on standard VQA benchmarks, preserving their fundamental capabilities.