2025
pdf
bib
abs
BanStereoSet: A Dataset to Measure Stereotypical Social Biases in LLMs for Bangla
Mahammed Kamruzzaman
|
Abdullah Al Monsur
|
Shrabon Kumar Das
|
Enamul Hassan
|
Gene Louis Kim
Findings of the Association for Computational Linguistics: ACL 2025
This study presents ***BanStereoSet***, a dataset designed to evaluate stereotypical social biases in multilingual LLMs for the Bangla language. In an effort to extend the focus of bias research beyond English-centric datasets, we have localized the content from the StereoSet, IndiBias, and kamruzzaman-etal’s datasets, producing a resource tailored to capture biases prevalent within the Bangla-speaking community. Our BanStereoSet dataset consists of 1,194 sentences spanning 9 categories of bias: race, profession, gender, ageism, beauty, beauty in profession, region, caste, and religion. This dataset not only serves as a crucial tool for measuring bias in multilingual LLMs but also facilitates the exploration of stereotypical bias across different social categories, potentially guiding the development of more equitable language technologies in *Bangladeshi* contexts. Our analysis of several language models using this dataset indicates significant biases, reinforcing the necessity for culturally and linguistically adapted datasets to develop more equitable language technologies.
pdf
bib
abs
The Impact of Name Age Perception on Job Recommendations in LLMs
Mahammed Kamruzzaman
|
Gene Louis Kim
Findings of the Association for Computational Linguistics: ACL 2025
Names often carry generational connotations, with certain names stereotypically associated with younger or older age groups. This study examines implicit age-related name bias in LLMs used for job recommendations. Analyzing six LLMs and 117 American names categorized by perceived age across 30 occupations, we find systematic bias: older-sounding names are favored for senior roles, while younger-sounding names are linked to youth-dominant jobs, reinforcing generational stereotypes. We also find that this bias is based on perceived rather than real ages associated with the names.
2024
pdf
bib
abs
“Global is Good, Local is Bad?”: Understanding Brand Bias in LLMs
Mahammed Kamruzzaman
|
Hieu Minh Nguyen
|
Gene Louis Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Many recent studies have investigated social biases in LLMs but brand bias has received little attention. This research examines the biases exhibited by LLMs towards different brands, a significant concern given the widespread use of LLMs in affected use cases such as product recommendation and market analysis. Biased models may perpetuate societal inequalities, unfairly favoring established global brands while marginalizing local ones. Using a curated dataset across four brand categories, we probe the behavior of LLMs in this space. We find a consistent pattern of bias in this space—both in terms of disproportionately associating global brands with positive attributes and disproportionately recommending luxury gifts for individuals in high-income countries. We also find LLMs are subject to country-of-origin effects which may boost local brand preference in LLM outputs in specific contexts.
2019
pdf
bib
abs
A Type-coherent, Expressive Representation as an Initial Step to Language Understanding
Gene Louis Kim
|
Lenhart Schubert
Proceedings of the 13th International Conference on Computational Semantics - Long Papers
A growing interest in tasks involving language understanding by the NLP community has led to the need for effective semantic parsing and inference. Modern NLP systems use semantic representations that do not quite fulfill the nuanced needs for language understanding: adequately modeling language semantics, enabling general inferences, and being accurately recoverable. This document describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for a semantic representation that balances these needs. ULFs fully resolve the semantic type structure while leaving issues such as quantifier scope, word sense, and anaphora unresolved; they provide a starting point for further resolution into EL, and enable certain structural inferences without further resolution. This document also presents preliminary results of creating a hand-annotated corpus of ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannotator agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.
pdf
bib
abs
Towards Natural Language Story Understanding with Rich Logical Schemas
Lane Lawley
|
Gene Louis Kim
|
Lenhart Schubert
Proceedings of the Sixth Workshop on Natural Language and Computer Science
Generating “commonsense’’ knowledge for intelligent understanding and reasoning is a difficult, long-standing problem, whose scale challenges the capacity of any approach driven primarily by human input. Furthermore, approaches based on mining statistically repetitive patterns fail to produce the rich representations humans acquire, and fall far short of human efficiency in inducing knowledge from text. The idea of our approach to this problem is to provide a learning system with a “head start” consisting of a semantic parser, some basic ontological knowledge, and most importantly, a small set of very general schemas about the kinds of patterns of events (often purposive, causal, or socially conventional) that even a one- or two-year-old could reasonably be presumed to possess. We match these initial schemas to simple children’s stories, obtaining concrete instances, and combining and abstracting these into new candidate schemas. Both the initial and generated schemas are specified using a rich, expressive logical form. While modern approaches to schema reasoning often only use slot-and-filler structures, this logical form allows us to specify complex relations and constraints over the slots. Though formal, the representations are language-like, and as such readily relatable to NL text. The agents, objects, and other roles in the schemas are represented by typed variables, and the event variables can be related through partial temporal ordering and causal relations. To match natural language stories with existing schemas, we first parse the stories into an underspecified variant of the logical form used by the schemas, which is suitable for most concrete stories. We include a walkthrough of matching a children’s story to these schemas and generating inferences from these matches.