Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, the development of such agents faces a critical bottleneck: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Further, these approaches exhibit significant gaps between the generated data and online environments, alongside limited data diversity. To address this issue, we introduce OS-Genesis, a novel GUI data synthesis pipeline that overcomes the challenges above. Unlike prior methods that rely on preset tasks, OS-Genesis reverse engineers the GUI trajectory construction process. Agents first perceive environments and perform step-level interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis’s cost-effectiveness and its superior data quality and diversity compared to existing synthesis methods.
The development of autonomous agents increasingly relies on Multimodal Language Models (MLMs) to perform tasks described in natural language with GUI environments, such as websites, desktop computers, or mobile phones. Existing benchmarks for MLM agents in interactive environments are limited by their focus on a single environment, lack of detailed and generalized evaluation methods, and thecomplexities of constructing tasks and evaluators. To overcome these limitations, we introduce CRAB, the first cross-environment agent benchmark framework, incorporating a graph-based fine-grained evaluation method and an efficient task generation method. Our framework supports multiple devices and can be easily extended to any environment with a Python interface. Leveraging CRAB, we develope CRAB Benchmark-v0 comprising 120 tasks in computer desktop and mobile phone environments. We evaluated 6 advanced MLMs using different single and multi-agent system configurations on this benchmark. The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 38.01%.
Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with legible visual texts. Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese texts, but their development shows promising potential. In this paper, we propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese. We first conduct a preliminary study revealing that BPE tokenization and insufficient learning of cross-attention modules restrict the performance of the backbone models. Based on these observations, we make the following improvements: (1) We design a mixed granularity input strategy to provide more suitable text representations; (2) We propose to augment the conventional training objective with three glyph-aware training losses, which enhance the learning of cross-attention modules and encourage the model to focus on visual texts. Through experiments, we demonstrate that our methods can effectively empower backbone models to generate semantic relevant, aesthetically appealing, and accurate visual text images, while maintaining their fundamental image generation quality.