Gholamreza Ghassem-Sani

Also published as: Gholamreza Ghasem-Sani, Gholamreza Ghassem-sani


2023

pdf
RobustQA: A Framework for Adversarial Text Generation Analysis on Question Answering Systems
Yasaman Boreshban | Seyed Morteza Mirbostani | Seyedeh Fatemeh Ahmadi | Gita Shojaee | Fatemeh Kamani | Gholamreza Ghassem-Sani | Seyed Abolghasem Mirroshandel
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Question answering (QA) systems have reached human-level accuracy; however, these systems are not robust enough and are vulnerable to adversarial examples. Recently, adversarial attacks have been widely investigated in text classification. However, there have been few research efforts on this topic in QA. In this article, we have modified the attack algorithms widely used in text classification to fit those algorithms for QA systems. We have evaluated the impact of various attack methods on QA systems at character, word, and sentence levels. Furthermore, we have developed a new framework, named RobustQA, as the first open-source toolkit for investigating textual adversarial attacks in QA systems. RobustQA consists of seven modules: Tokenizer, Victim Model, Goals, Metrics, Attacker, Attack Selector, and Evaluator. It currently supports six different attack algorithms. Furthermore, the framework simplifies the development of new attack algorithms in QA. The source code and documentation of RobustQA are available at https://github.com/mirbostani/RobustQA.

2021

pdf
BERT-PersNER: A New Model for Persian Named Entity Recognition
Farane Jalali Farahani | Gholamreza Ghassem-Sani
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Named entity recognition (NER) is one of the major tasks in natural language processing. A named entity is often a word or expression that bears a valuable piece of information, which can be effectively employed by some major NLP tasks such as machine translation, question answering, and text summarization. In this paper, we introduce a new model called BERT-PersNER (BERT based Persian Named Entity Recognizer), in which we have applied transfer learning and active learning approaches to NER in Persian, which is regarded as a low-resource language. Like many others, we have used Conditional Random Field for tag decoding in our proposed architecture. BERT-PersNER has outperformed two available studies in Persian NER, in most cases of our experiments using the supervised learning approach on two Persian datasets called Arman and Peyma. Besides, as the very first effort to try active learning in the Persian NER, using only 30% of Arman and 20% of Peyma, we respectively achieved 92.15%, and 92.41% performance of the mentioned supervised learning experiments.

2013

pdf
Temporal Relation Classification in Persian and English contexts
Mahbaneh Eshaghzadeh Torbati | Gholamreza Ghassem-sani | Seyed Abolghasem Mirroshandel | Yadollah Yaghoobzadeh | Negin Karimi Hosseini
Proceedings of the International Conference Recent Advances in Natural Language Processing RANLP 2013

pdf
History Based Unsupervised Data Oriented Parsing
Mohsen Mesgar | Gholamreza Ghasem-Sani
Proceedings of the International Conference Recent Advances in Natural Language Processing RANLP 2013

2012

pdf
ISO-TimeML Event Extraction in Persian Text
Yadollah Yaghoobzadeh | Gholamreza Ghassem-sani | Seyed Abolghasem Mirroshandel | Mahbaneh Eshaghzadeh
Proceedings of COLING 2012

2011

pdf
Active Learning Strategies for Support Vector Machines, Application to Temporal Relation Classification
Seyed Abolghasem Mirroshandel | Gholamreza Ghassem-Sani | Alexis Nasr
Proceedings of 5th International Joint Conference on Natural Language Processing

pdf
Temporal Relation Extraction Using Expectation Maximization
Seyed Abolghasem Mirroshandel | Gholamreza Ghassem-Sani
Proceedings of the International Conference Recent Advances in Natural Language Processing 2011

2009

pdf
Using Tree Kernels for Classifying Temporal Relations between Events
Seyed Abolghasem Mirroshandel | Gholamreza Ghassem-Sani | Mahdy Khayyamian
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 1

2008

pdf
A Multi-Document Multi-Lingual Automatic Summarization System
Mohamad Ali Honarpisheh | Gholamreza Ghassem-Sani | Ghassem Mirroshandel
Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II