Francesco Ignazio Re


2025

pdf bib
A Spatio-Temporal Point Process for Fine-Grained Modeling of Reading Behavior
Francesco Ignazio Re | Andreas Opedal | Glib Manaiev | Mario Giulianelli | Ryan Cotterell
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reading is a process that unfolds across space and time, alternating between fixations where a reader focuses on a specific point in space, and saccades where a reader rapidly shifts their focus to a new point. An ansatz of psycholinguistics is that modeling a reader's fixations and saccades yields insight into their online sentence processing. However, standard approaches to such modeling rely on aggregated eye-tracking measurements and models that impose strong assumptions, ignoring much of the spatio-temporal dynamics that occur during reading. In this paper, we propose a more general probabilistic model of reading behavior, based on a marked spatio-temporal point process, that captures not only how long fixations last, but also where they land in space and when they take place in time. The saccades are modeled using a Hawkes process, which captures how each fixation excites the probability of a new fixation occurring near it in time and space. The duration time of fixation events is modeled as a function of fixation-specific predictors convolved across time, thus capturing spillover effects. Empirically, our Hawkes process model exhibits a better fit to human saccades than baselines. With respect to fixation durations, we observe that incorporating contextual surprisal as a predictor results in only a marginal improvement in the model's predictive accuracy. This finding suggests that surprisal theory struggles to explain fine-grained eye movements.

2021

pdf bib
Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021
Salvatore Giorgi | Vanni Zavarella | Hristo Tanev | Nicolas Stefanovitch | Sy Hwang | Hansi Hettiarachchi | Tharindu Ranasinghe | Vivek Kalyan | Paul Tan | Shaun Tan | Martin Andrews | Tiancheng Hu | Niklas Stoehr | Francesco Ignazio Re | Daniel Vegh | Dennis Atzenhofer | Brenda Curtis | Ali Hürriyetoğlu
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events “in the wild” from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system’s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson r), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.