Florian Debaene


2025

pdf bib
Evaluating Transformers for OCR Post-Correction in Early Modern Dutch Theatre
Florian Debaene | Aaron Maladry | Els Lefever | Veronique Hoste
Proceedings of the 31st International Conference on Computational Linguistics

This paper explores the effectiveness of two types of transformer models — large generative models and sequence-to-sequence models — for automatically post-correcting Optical Character Recognition (OCR) output in early modern Dutch plays. To address the need for optimally aligned data, we create a parallel dataset based on the OCRed and ground truth versions from the EmDComF corpus using state-of-the-art alignment techniques. By combining character-based and semantic methods, we design and release a qualitative OCR-to-gold parallel dataset, selecting the alignment with the lowest Character Error Rate (CER) for all alignment pairs. We then fine-tune and evaluate five generative models and four sequence-to-sequence models on the OCR post-correction dataset. Results show that sequence-to-sequence models generally outperform generative models in this task, correcting more OCR errors and overgenerating and undergenerating less, with mBART as the best performing system.

pdf bib
Classifying TEI Encoding for DutchDraCor with Transformer Models
Florian Debaene | Veronique Hoste
Proceedings of the 19th Linguistic Annotation Workshop (LAW-XIX-2025)

Computational Drama Analysis relies on well-structured textual data, yet many dramatic works remain in need of encoding. The Dutch dramatic tradition is one such an example, with currently 180 plays available in the DraCor database, while many more plays await integration still. To facilitate this process, we propose a semi-automated TEI encoding annotation methodology using transformer encoder language models to classify structural elements in Dutch drama. We fine-tune 4 Dutch models on the DutchDraCor dataset to predict the 9 most relevant labels used in the DraCor TEI encoding, experimenting with 2 model input settings. Our results show that incorporating additional context through beginning-of-sequence (BOS) and end-of-sequence (EOS) tokens greatly improves performance, increasing the average macro F1 score across models from 0.717 to 0.923 (+0.206). Using the best-performing model, we generate silver-standard DraCor labels for EmDComF, an unstructured corpus of early modern Dutch comedies and farces, paving the way for its integration into DutchDraCor after validation.

2024

pdf bib
Early Modern Dutch Comedies and Farces in the Spotlight: Introducing EmDComF and Its Emotion Framework
Florian Debaene | Kornee van der Haven | Veronique Hoste
Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) @ LREC-COLING-2024

As computational drama studies are developing rapidly, the Dutch dramatic tradition is in need of centralisation still before it can benefit from state-of-the-art methodologies. This paper presents and evaluates EmDComF, a historical corpus of both manually curated and automatically digitised early modern Dutch comedies and farces authored between 1650 and 1725, and describes the refinement of a historically motivated annotation framework exploring sentiment and emotions in these two dramatic subgenres. Originating from Lodewijk Meyer’s philosophical writings on passions in the dramatic genre (±1670), published in Naauwkeurig onderwys in de tooneel-poëzy (Thorough instruction in the Poetics of Drama) by the literary society Nil Volentibus Arduum in 1765, a historical and genre-specific emotion framework is tested and operationalised for annotating emotions in the domain of early modern Dutch comedies and farces. Based on a frequency and cluster analysis of 782 annotated sentences by 2 expert annotators, the initial 38 emotion labels were restructured to a hierarchical label set of the 5 emotions Hatred, Anxiety, Sadness, Joy and Desire.