Fiona Luo


2025

pdf bib
Multilingual Retrieval Augmented Generation for Culturally-Sensitive Tasks: A Benchmark for Cross-lingual Robustness
Bryan Li | Fiona Luo | Samar Haider | Adwait Agashe | Siyu Li | Runqi Liu | Miranda Muqing Miao | Shriya Ramakrishnan | Yuan Yuan | Chris Callison-Burch
Findings of the Association for Computational Linguistics: ACL 2025

The paradigm of retrieval-augmented generated (RAG) helps mitigate hallucinations of large language models (LLMs). However, RAG also introduces biases contained within the retrieved documents. These biases can be amplified in scenarios which are multilingual and culturally-sensitive, such as territorial disputes. We thus introduce BordIRLines, a dataset of territorial disputes paired with retrieved Wikipedia documents, across 49 languages. We evaluate the cross-lingual robustness of this RAG setting by formalizing several modes for multilingual retrieval. Our experiments on several LLMs show that incorporating perspectives from diverse languages can in fact improve robustness; retrieving multilingual documents best improves response consistency and decreases geopolitical bias over RAG with purely in-language documents. We also consider how RAG responses utilize presented documents, finding a much wider variance in the linguistic distribution of response citations, when querying in low-resource languages. Our further analyses investigate the various aspects of a cross-lingual RAG pipeline, from retrieval to document contents. We release our benchmark to support continued research towards equitable information access across languages, at https://huggingface.co/datasets/borderlines/bordirlines.

2024

pdf bib
BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval Augmented Generation
Bryan Li | Samar Haider | Fiona Luo | Adwait Agashe | Chris Callison-Burch
Proceedings of the First Workshop on Advancing Natural Language Processing for Wikipedia

Large language models excel at creative generation but continue to struggle with the issues of hallucination and bias. While retrieval-augmented generation (RAG) provides a framework for grounding LLMs’ responses in accurate and up-to-date information, it still raises the question of bias: which sources should be selected for inclusion in the context? And how should their importance be weighted? In this paper, we study the challenge of cross-lingual RAG and present a dataset to investigate the robustness of existing systems at answering queries about geopolitical disputes, which exist at the intersection of linguistic, cultural, and political boundaries. Our dataset is sourced from Wikipedia pages containing information relevant to the given queries and we investigate the impact of including additional context, as well as the composition of this context in terms of language and source, on an LLM’s response. Our results show that existing RAG systems continue to be challenged by cross-lingual use cases and suffer from a lack of consistency when they are provided with competing information in multiple languages. We present case studies to illustrate these issues and outline steps for future research to address these challenges.