2025
pdf
bib
abs
Focus on What Matters: Enhancing Medical Vision-Language Models with Automatic Attention Alignment Tuning
Aofei Chang
|
Le Huang
|
Alex James Boyd
|
Parminder Bhatia
|
Taha Kass-Hout
|
Cao Xiao
|
Fenglong Ma
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Medical Large Vision-Language Models (Med-LVLMs) often exhibit suboptimal attention distribution on visual inputs, leading to hallucinated or inaccurate outputs. Existing methods primarily rely on inference-time interventions, which are limited in attention adaptation or require additional supervision. To address this, we propose A3Tune, a novel fine-tuning framework for Automatic Attention Alignment Tuning. ATune leverages zero-shot weak labels from SAM, refines them into prompt-aware labels using BioMedCLIP, and then selectively modifies visually-critical attention heads to improve alignment while minimizing interference. Additionally, we introduce a A3MoE module, enabling adaptive parameter selection for attention tuning across diverse prompts and images. Extensive experiments on medical VQA and report generation benchmarks show that A3Tune outperforms state-of-the-art baselines, achieving enhanced attention distributions and performance in Med-LVLMs.
pdf
bib
abs
AdaDHP: Fine-Grained Fine-Tuning via Dual Hadamard Product and Adaptive Parameter Selection
Han Liu
|
Changya Li
|
Xiaotong Zhang
|
Feng Zhang
|
Fenglong Ma
|
Wei Wang
|
Hong Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
With the continuously expanding parameters, efficiently adapting large language models to downstream tasks is crucial in resource-limited conditions. Many parameter-efficient fine-tuning methods have emerged to address this challenge. However, they lack flexibility, like LoRA requires manually selecting trainable parameters and rank size, (IA)3 can only scale the activations along columns, yielding inferior results due to less precise fine-tuning. To address these issues, we propose a novel method named AdaDHP with fewer parameters and finer granularity, which can adaptively select important parameters for each task. Specifically, we introduce two trainable vectors for each parameter and fine-tune the parameters through Hadamard product along both rows and columns. This significantly reduces the number of trainable parameters, with our parameter count capped at the lower limit of LoRA. Moreover, we design an adaptive parameter selection strategy to select important parameters for downstream tasks dynamically. This allows our method to flexibly remove unimportant parameters for downstream tasks. Finally, we demonstrate the superiority of our method on the T5-base model across 17 NLU tasks and on complex mathematical tasks with the Llama series models.
pdf
bib
abs
Shadow-Activated Backdoor Attacks on Multimodal Large Language Models
Ziyi Yin
|
Muchao Ye
|
Yuanpu Cao
|
Jiaqi Wang
|
Aofei Chang
|
Han Liu
|
Jinghui Chen
|
Ting Wang
|
Fenglong Ma
Findings of the Association for Computational Linguistics: ACL 2025
This paper delves into a novel backdoor attack scenario, aiming to uncover potential security risks associated with Multimodal Large Language Models (MLLMs) during multi-round open-ended conversations with users. In the practical use of MLLMs, users have full control over the interaction process with the model, such as using their own collected photos and posing arbitrary open-ended questions. Traditional backdoor attacks that rely on adding external triggers are less applicable. To this end, we introduce a new shadow-activated backdoor attacking paradigm in this paper, wherein attacks implicitly inject malicious content into the responses of MLLMs when the responses explicitly relate to the shadowed object, i.e., without any triggers. To facilitate the shadow-activated backdoor attack, we present a novel framework named BadMLLM to achieve the desired behaviors by constructing a poisoned dataset using GPT-4 Vision and implementing an attention-regularized tuning strategy to address the semantic discontinuity between the original response and the inserted promotion. Extensive experimental results conducted on five MLLMs, three objects, and two types of promotion slogans have demonstrated impressive performance in achieving both efficacy and utility goals, thereby highlighting the significant potential risks concealed within MLLMs.
2024
pdf
bib
abs
Unity in Diversity: Collaborative Pre-training Across Multimodal Medical Sources
Xiaochen Wang
|
Junyu Luo
|
Jiaqi Wang
|
Yuan Zhong
|
Xiaokun Zhang
|
Yaqing Wang
|
Parminder Bhatia
|
Cao Xiao
|
Fenglong Ma
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Although pre-training has become a prevalent approach for addressing various biomedical tasks, the current efficacy of pre-trained models is hindered by their reliance on a limited scope of medical sources. This limitation results in data scarcity during pre-training and restricts the range of applicable downstream tasks. In response to these challenges, we develop MedCSP, a new pre-training strategy designed to bridge the gap between multimodal medical sources. MedCSP employs modality-level aggregation to unify patient data within individual sources. Additionally, leveraging temporal information and diagnosis history, MedCSP effectively captures explicit and implicit correlations between patients across different sources. To evaluate the proposed strategy, we conduct comprehensive experiments, where the experiments are based on 6 modalities from 2 real-world medical data sources, and MedCSP is evaluated on 4 tasks against 19 baselines, marking an initial yet essential step towards cross-source modeling in the medical domain.
pdf
bib
abs
FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models
Xiaochen Wang
|
Jiaqi Wang
|
Houping Xiao
|
Jinghui Chen
|
Fenglong Ma
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Foundation models have demonstrated remarkable capabilities in handling diverse modalities and tasks, outperforming conventional artificial intelligence (AI) approaches that are highly task-specific and modality-reliant. In the medical domain, however, the development of comprehensive foundation models is constrained by limited access to diverse modalities and stringent privacy regulations. To address these constraints, this study introduces a novel knowledge injection approach, FedKIM, designed to scale the medical foundation model within a federated learning framework. FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model using a designed adaptive Multitask Multimodal Mixture Of Experts (M3OE) module. This method not only preserves privacy but also enhances the model’s ability to handle complex medical tasks involving multiple modalities. Our extensive experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings, highlighting its potential to scale medical foundation models without direct access to sensitive data. Source codes are available at https://github.com/XiaochenWang-PSU/FedKIM.
pdf
bib
abs
Zero-Resource Hallucination Prevention for Large Language Models
Junyu Luo
|
Cao Xiao
|
Fenglong Ma
Findings of the Association for Computational Linguistics: EMNLP 2024
The prevalent use of large language models (LLMs) in various domains has drawn attention to the issue of “hallucination”, which refers to instances where LLMs generate factually inaccurate or ungrounded information. Existing techniques usually identify hallucinations post-generation that cannot prevent their occurrence and suffer from inconsistent performance due to the influence of the instruction format and model style. In this paper, we introduce a novel pre-detection self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model’s familiarity with the concepts present in the input instruction and withholding the generation of response in case of unfamiliar concepts under the zero-resource setting, where external ground-truth or background information is not available. We also propose a new dataset Concept-7 focusing on the hallucinations caused by limited inner knowledge. We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques. Our findings propose a significant shift towards preemptive strategies for hallucination mitigation in LLM assistants, promising improvements in reliability, applicability, and interpretability.
pdf
bib
abs
BIPEFT: Budget-Guided Iterative Search for Parameter Efficient Fine-Tuning of Large Pretrained Language Models
Aofei Chang
|
Jiaqi Wang
|
Han Liu
|
Parminder Bhatia
|
Cao Xiao
|
Ting Wang
|
Fenglong Ma
Findings of the Association for Computational Linguistics: EMNLP 2024
Parameter Efficient Fine-Tuning (PEFT) offers an efficient solution for fine-tuning large pretrained language models for downstream tasks. However, most PEFT strategies are manually designed, often resulting in suboptimal performance. Recent automatic PEFT approaches aim to address this but face challenges such as search space entanglement, inefficiency, and lack of integration between parameter budgets and search processes. To overcome these issues, we introduce a novel Budget-guided Iterative search strategy for automatic PEFT (BIPEFT), significantly enhancing search efficiency. BIPEFT employs a new iterative search strategy to disentangle the binary module and rank dimension search spaces. Additionally, we design early selection strategies based on parameter budgets, accelerating the learning process by gradually removing unimportant modules and fixing rank dimensions. Extensive experiments on public benchmarks demonstrate the superior performance of BIPEFT in achieving efficient and effective PEFT for downstream tasks with a low parameter budget.
pdf
bib
abs
CoRelation: Boosting Automatic ICD Coding through Contextualized Code Relation Learning
Junyu Luo
|
Xiaochen Wang
|
Jiaqi Wang
|
Aofei Chang
|
Yaqing Wang
|
Fenglong Ma
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Automatic International Classification of Diseases (ICD) coding plays a crucial role in the extraction of relevant information from clinical notes for proper recording and billing. One of the most important directions for boosting the performance of automatic ICD coding is modeling ICD code relations. However, current methods insufficiently model the intricate relationships among ICD codes and often overlook the importance of context in clinical notes. In this paper, we propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations. Our approach, unlike existing methods, employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations. We evaluate our approach on six public ICD coding datasets and the experimental results demonstrate the effectiveness of our approach compared to state-of-the-art baselines.
2023
pdf
bib
abs
Hierarchical Pretraining on Multimodal Electronic Health Records
Xiaochen Wang
|
Junyu Luo
|
Jiaqi Wang
|
Ziyi Yin
|
Suhan Cui
|
Yuan Zhong
|
Yaqing Wang
|
Fenglong Ma
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Pretraining has proven to be a powerful technique in natural language processing (NLP), exhibiting remarkable success in various NLP downstream tasks. However, in the medical domain, existing pretrained models on electronic health records (EHR) fail to capture the hierarchical nature of EHR data, limiting their generalization capability across diverse downstream tasks using a single pretrained model. To tackle this challenge, this paper introduces a novel, general, and unified pretraining framework called MedHMP, specifically designed for hierarchically multimodal EHR data. The effectiveness of the proposed MedHMP is demonstrated through experimental results on eight downstream tasks spanning three levels. Comparisons against eighteen baselines further highlight the efficacy of our approach.
2022
pdf
bib
abs
RealMedDial: A Real Telemedical Dialogue Dataset Collected from Online Chinese Short-Video Clips
Bo Xu
|
Hongtong Zhang
|
Jian Wang
|
Xiaokun Zhang
|
Dezhi Hao
|
Linlin Zong
|
Hongfei Lin
|
Fenglong Ma
Proceedings of the 29th International Conference on Computational Linguistics
Intelligent medical services have attracted great research interests for providing automated medical consultation. However, the lack of corpora becomes a main obstacle to related research, particularly data from real scenarios. In this paper, we construct RealMedDial, a Chinese medical dialogue dataset based on real medical consultation. RealMedDial contains 2,637 medical dialogues and 24,255 utterances obtained from Chinese short-video clips of real medical consultations. We collected and annotated a wide range of meta-data with respect to medical dialogue including doctor profiles, hospital departments, diseases and symptoms for fine-grained analysis on language usage pattern and clinical diagnosis. We evaluate the performance of medical response generation, department routing and doctor recommendation on RealMedDial. Results show that RealMedDial are applicable to a wide range of NLP tasks with respect to medical dialogue.
pdf
bib
abs
Benchmarking Automated Clinical Language Simplification: Dataset, Algorithm, and Evaluation
Junyu Luo
|
Junxian Lin
|
Chi Lin
|
Cao Xiao
|
Xinning Gui
|
Fenglong Ma
Proceedings of the 29th International Conference on Computational Linguistics
Patients with low health literacy usually have difficulty understanding medical jargon and the complex structure of professional medical language. Although some studies are proposed to automatically translate expert language into layperson-understandable language, only a few of them focus on both accuracy and readability aspects simultaneously in the clinical domain. Thus, simplification of the clinical language is still a challenging task, but unfortunately, it is not yet fully addressed in previous work. To benchmark this task, we construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches. Besides, we propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance compared with eight strong baselines. To fairly evaluate the performance, we also propose three specific evaluation metrics. Experimental results demonstrate the utility of the annotated MedLane dataset and the effectiveness of the proposed model DECLARE.
2021
pdf
bib
abs
Writing by Memorizing: Hierarchical Retrieval-based Medical Report Generation
Xingyi Yang
|
Muchao Ye
|
Quanzeng You
|
Fenglong Ma
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Medical report generation is one of the most challenging tasks in medical image analysis. Although existing approaches have achieved promising results, they either require a predefined template database in order to retrieve sentences or ignore the hierarchical nature of medical report generation. To address these issues, we propose MedWriter that incorporates a novel hierarchical retrieval mechanism to automatically extract both report and sentence-level templates for clinically accurate report generation. MedWriter first employs the Visual-Language Retrieval (VLR) module to retrieve the most relevant reports for the given images. To guarantee the logical coherence between generated sentences, the Language-Language Retrieval (LLR) module is introduced to retrieve relevant sentences based on the previous generated description. At last, a language decoder fuses image features and features from retrieved reports and sentences to generate meaningful medical reports. We verified the effectiveness of our model by automatic evaluation and human evaluation on two datasets, i.e., Open-I and MIMIC-CXR.
pdf
bib
Fusion: Towards Automated ICD Coding via Feature Compression
Junyu Luo
|
Cao Xiao
|
Lucas Glass
|
Jimeng Sun
|
Fenglong Ma
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
pdf
bib
abs
Knowledge-Guided Paraphrase Identification
Haoyu Wang
|
Fenglong Ma
|
Yaqing Wang
|
Jing Gao
Findings of the Association for Computational Linguistics: EMNLP 2021
Paraphrase identification (PI), a fundamental task in natural language processing, is to identify whether two sentences express the same or similar meaning, which is a binary classification problem. Recently, BERT-like pre-trained language models have been a popular choice for the frameworks of various PI models, but almost all existing methods consider general domain text. When these approaches are applied to a specific domain, existing models cannot make accurate predictions due to the lack of professional knowledge. In light of this challenge, we propose a novel framework, namely , which can leverage the external unstructured Wikipedia knowledge to accurately identify paraphrases. We propose to mine outline knowledge of concepts related to given sentences from Wikipedia via BM25 model. After retrieving related outline knowledge, makes predictions based on both the semantic information of two sentences and the outline knowledge. Besides, we propose a gating mechanism to aggregate the semantic information-based prediction and the knowledge-based prediction. Extensive experiments are conducted on two public datasets: PARADE (a computer science domain dataset) and clinicalSTS2019 (a biomedical domain dataset). The results show that the proposed outperforms state-of-the-art methods.
2019
pdf
bib
abs
Multi-grained Named Entity Recognition
Congying Xia
|
Chenwei Zhang
|
Tao Yang
|
Yaliang Li
|
Nan Du
|
Xian Wu
|
Wei Fan
|
Fenglong Ma
|
Philip Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.